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Symmetric Chain Decompositions and the
Strong Sperner Property for Noncrossing
Partition Lattices

Henri Mühle†

LIX, École Polytechnique, F-91128 Palaiseau, France

Abstract. We prove that the noncrossing partition lattices associated with the complex reflection groups G(d, d, n)
for d, n ≥ 2 admit a decomposition into saturated chains that are symmetric about the middle ranks. A consequence
of this result is that these lattices have the strong Sperner property, which asserts that the cardinality of the union of
the k largest antichains does not exceed the sum of the k largest ranks for all k ≤ n. Subsequently, we use a computer
to complete the proof that any noncrossing partition lattice associated with a well-generated complex reflection group
is strongly Sperner, thus affirmatively answering a special case of a question of D. Armstrong. This was previously
established only for the Coxeter groups of type A and B.

Résumé. Nous prouvons que les treillis des partitions non-croisées associés aux groupes de réflexion complèxe
G(d, d, n), où d, n ≥ 2, admettent une décomposition en chaı̂nes saturées qui sont symétriques par rapport au
rang moyen. Une conséquence de ce résultat est que ces treillis ont la propriété forte de Sperner qui affirme que le
cardinal de l’union des k antichaı̂nes les plus grands ne dépasse pas la somme des k rangs les plus grands pour tout
k ≤ n. Ensuite, nous utilisons un ordinateur pour compléter la preuve que chaque treillis des partitions non-croisées
associé à un groupe de réflexion complèxe bien engendré a la propriété forte de Sperner. Ce résultat résout un cas
spécial d’un question de D. Armstrong, et avait été établi auparavant seulement pour les groupes de Coxeter de type
A et B.

Keywords. noncrossing partition lattices, well-generated complex reflection groups, symmetric chain decomposi-
tions, strongly Sperner posets

1 Introduction
A classical result due to E. Sperner asserts that the maximal size of a family of pairwise incomparable
subsets of an n-element set (also called an antichain) is

(
n
bn2 c
)

[28]. This result was generalized by
P. Erdős, who showed that the maximal size of a k-family, i.e. a family of subsets of an n-element set that
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can be written as the union of at most k antichains, is the sum of the largest k binomial coefficients [16,
Theorem 5]. The case k = 1 clearly yields Sperner’s original result.

We can easily rephrase these results in a poset-theoretical way, so that they can be read as “the maximal
size of a union of k antichains in the Boolean lattice does not exceed the sum of its k largest rank numbers”.
If we now replace “the Boolean lattice” by “a graded poset”, we arrive at a poset property that is usually
called being k-Sperner. Moreover, posets that are k-Sperner for all k not exceeding the length of the poset
are called strongly Sperner. Examples of strongly Sperner posets are the Boolean lattices, the lattices of
divisors of some integer [13], or the Bruhat posets associated with finite Coxeter groups [30]. Some posets
that in general lack the Sperner property are geometric lattices [14], in particular lattices of set partitions
of a sufficiently large set [9].

One method to prove that a graded poset is strongly Sperner is to check whether it can be decomposed
into symmetric chains, i.e. saturated chains that are symmetric about the middle ranks. Despite the fact
that the partition lattice is in general not Sperner, it has a well-behaved subposet, the lattice of noncrossing
set partitions, which is indeed strongly Sperner. This property was shown by R. Simion and D. Ullmann
by explicitly constructing a decomposition into symmetric chains in [27, Theorem 2]. In the late 1990s
it was observed by several authors how the lattice of noncrossing set partitions can be viewed as a poset
associated with the symmetric group [6, 7], and this construction was generalized algebraically to other
reflection groups soon after so that nowadays there exists a “noncrossing partition lattice” for each well-
generated complex reflection group W , denoted by NCW . According to the classification of irreducible
complex reflection groups in [26], there is one infinite family whose members can be realized as groups of
monomial (n× n)-matrices whose non-zero entries are (de)th roots of unity, and in which the product of
the non-zero entries is a dth root of unity, and such groups are usually denoted by G(de, e, n). Moreover,
there are 34 exceptional irreducible complex reflection groups, denoted by G4, G5, . . . , G37. The well-
generated irreducible complex reflection groups fall into four categories: they are either isomorphic to
G(1, 1, n) for some n ≥ 1, to G(d, 1, n) for some d ≥ 2, n ≥ 1, to G(d, d, n) for some d, n ≥ 2, or they
are one of 26 exceptional groups. We remark that all irreducible finite Coxeter groups, namely reflection
groups that can be realized over a real vector space, are well-generated. See [19, Example 2.11] for the
details.

In the above notation, the groups G(1, 1, n) for n ≥ 1 are precisely the symmetric groups, and the non-
crossing partition lattice NCG(1,1,n) is isomorphic to the classical lattice of noncrossing set partitions of
an n-element set [6, 7]. Using a combinatorial construction predating the algebraic one, V. Reiner intro-
duced noncrossing partition lattices for the hyperoctahedral groups (which are isomorphic to the groups
G(2, 1, n), n ≥ 1), and showed that these also have the strong Sperner property by giving a symmetric
chain decomposition [24, Theorem 13]. D. Bessis showed in [4, 5] that the noncrossing partition lattice
associated with a well-generated complex reflection group W can be realized using the simple elements
in the dual braid monoid of W , and it follows from this perspective that NCG(d,1,n)

∼= NCG(2,1,n) for all
d ≥ 2 and n ≥ 1. Thus when we restrict our attention to well-generated irreducible complex reflection
groups, the question of whether or not all noncrossing partition lattices admit a symmetric chain decom-
position is only open for the groups G(d, d, n), d, n ≥ 2, and for the exceptional groups. In this article,
we answer this question affirmatively for the groups G(d, d, n) with d, n ≥ 2.

Theorem 1 For any d, n ≥ 2, the lattice NCG(d,d,n) of G(d, d, n)-noncrossing partitions admits a sym-
metric chain decomposition. Consequently, it is strongly Sperner, rank-symmetric, and rank-unimodal.

The basic idea for our symmetric chain decomposition of NCG(d,d,n) is that the elements in G(d, d, n)
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can be viewed as certain permutations of n integers in d colors, and can therefore be grouped accord-
ing to the image of the first integer in the first color. This is clearly a decomposition of the group (and
consequently of the poset), and the subposets induced by the parts correspond to direct products of non-
crossing partition lattices of type G(d, d, n′) or G(1, 1, n′) for n′ < n. However, there exist parts in this
decomposition that do not sit symmetrically inNCG(d,d,n). We overcome this issue by slightly modifying
this decomposition. We remark further that according to [3], E. Tzanaki obtained Theorem 1 for the case
d = 2 before. However, her proof has not appeared in print.

In his thesis [2], D. Armstrong generalized the noncrossing partition lattices associated with a Coxeter
group W by adding a parameter m, so that one obtains a certain partial order on the multichains of
NCW having length m, and this construction naturally extends to all well-generated complex reflection
groups. Among many other things, he posed the question whether his m-divisible noncrossing partition
posets, denoted by NC(m)

W , are strongly Sperner for any Coxeter group W and any positive integer m [2,
Open Problem 3.5.12]. Our Theorem 1 together with a computer verification in the exceptional types
answers this question affirmatively for m = 1. A key tool for making the computer verification feasible is
Proposition 15, which relates the strong Sperner property of a given graded poset to the Sperner property
of certain rank-selected subposets.

Theorem 2 For any well-generated complex reflection group, the lattice NCW is strongly Sperner, rank-
symmetric, and rank-unimodal.

The posetNC(m)
W can be viewed as an order ideal in them-fold direct product ofNCW with itself. Since

NCW is rank-unimodal and rank-symmetric, the strong Sperner property is in this case preserved under
taking direct products, and it follows that NC(m)

W is an order ideal in a strongly Sperner poset. Can this
connection be used to conclude the strong Sperner property forNC(m)

W ? Since form > 1 the posetNC(m)
W

is not rank-symmetric anymore, we cannot expect the existence of a symmetric chain decomposition.

This document constitutes an extended abstract of [21], and we have therefore omitted many proofs and
computations. (The omitted details can of course be found in the full version.) The layout of this paper is
as follows. In Section 2, we recall the necessary notions, in particular the definitions of strongly Sperner
posets (Section 2.1), complex reflection groups (Section 2.2), and noncrossing partitions (Section 2.4). In
Section 3 we prove Theorem 1. To accomplish that, we first investigate a straightforward generalization
of the decomposition of NCG(1,1,n) from [27, Theorem 2] to NCG(d,d,n) for a certain choice of Coxeter
element (Section 3.2). Subsequently, in Section 3.3, we modify this decomposition in order to make it a
suitable starting point for a symmetric chain decomposition of NCG(d,d,n). In Section 4 we conclude this
extended abstract with the proof of Theorem 2.

2 Preliminaries
In this section we recall the necessary definitions that we use in this article. For further background on
partially ordered sets we recommend [12]; an excellent introduction to the Sperner property and related
subjects is [1]. An extensive textbook on complex reflection groups is [19], and a recent exposition on
Coxeter elements is [25]. Throughout the paper we use the abbreviation [n] = {1, 2, . . . , n} for an integer
n, and we consider only finite posets.
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(a) A decomposition of
a graded poset into
three parts.

(b) A symmetric
decomposition of the
poset in Figure 1(a).

(c) A symmetric chain
decomposition of the
poset in Figure 1(a)
into four chains, one of
which is a singleton sit-
ting on the middle rank.

Fig. 1: Examples of poset decompositions.

2.1 Partially Ordered Sets
Let P = (P,≤) be a partially ordered set (poset for short). Given two elements p, q ∈ P , we say that q
covers p if p < q and there exists no x ∈ P with p < x < q. In this case, we also say that p is covered
by q or that p and q form a covering, and we usually write pl q. If P has a least element, say 0̂, then any
element p ∈ P with 0̂ l p is an atom of P . Dually, if P has a greatest element, say 1̂, then any element
p ∈ P with p l 1̂ is a coatom of P . An interval of P is a subset of P that can be written in the form
[p, q] = {x ∈ P | p ≤ x ≤ q} for some p, q ∈ P with p ≤ q. A chain of P is a subset of P that can be
written as C = {p1, p2, . . . , ps} such that p1 < p2 < · · · < ps, and the length of a chain is its cardinality
minus one. A chain is saturated if it is a sequence of coverings. A saturated chain is maximal if it contains
a minimal and a maximal element of P . The length of P is the maximal length of a maximal chain, and
we usually denote this by `(P). A poset is graded if all maximal chains have the same length, and we can
then assign a rank to each element x ∈ P , namely the length of a maximal chain from a minimal element
in P to x. We usually write rk(x) for the rank of x. A lattice is a poset in which any two elements have a
least upper bound and a greatest lower bound.

Given two posets P = (P,≤P ) andQ = (Q,≤Q), the direct product is the poset P×Q = (P×Q,≤),
where (p1, q1) ≤ (p2, q2) if and only if p1 ≤P p2 and q1 ≤Q q2. If we denote disjoint set union by ],
then, by abuse of notation, the disjoint union is the poset P ] Q = (P ]Q,≤), where x ≤ y if and only
if either x, y ∈ P and x ≤P y or x, y ∈ Q and x ≤Q y.

A decomposition of P is a partition of the ground set of P into pairwise disjoint subsets, namely
P = D1 ] D2 ] · · · ] Ds. A decomposition of a graded poset is symmetric if for each i ∈ [s] the part
Di induces a connected(i) subposet with the property that for each minimal element p of Di there exists a
unique maximal element q of Di with rk(p) + rk(q) = `(P). A saturated chain C = {p1, p2, . . . , ps} is
symmetric if rk(p1) + rk(ps) = `(P), and a symmetric chain decomposition of P is a decomposition of
P into symmetric chains. See Figure 1 for some examples.

An antichain of P is a subset of P that consists of pairwise incomparable elements. Now suppose that

(i) Here “connected” means that the Hasse diagram of (Di,≤) is an induced subgraph of the Hasse diagram of P , i.e. for all
x, y ∈ Di we have x l y in (Di,≤) if and only if x l y in P .
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(a) A strongly Sperner
poset.

(b) A Sperner poset
that is not 2-Sperner.

(c) A 2-Sperner poset
that is not Sperner.

Fig. 2: Some illustrations of the Sperner property.

P is graded and has length n. The rank vector NP = (N0, N1, . . . , Nn) of P is defined by Ni =
∣∣{p ∈

P | rk(p) = i}
∣∣ for i ∈ {0, 1, . . . , n}, and its entries are the rank numbers of P . If Ni = Nn−i for all

i, then P is rank-symmetric, and if N0 ≤ N1 ≤ · · · ≤ Nj ≥ Nj+1 ≥ · · · ≥ Nn for some j, then P is
rank-unimodal. A k-family is a subset of P that can be written as a union of at most k antichains of P . A
graded poset is k-Sperner if the size of a maximal k-family equals the sum of the k largest rank numbers,
and it is strongly Sperner if it is k-Sperner for all k ∈ [n]. See Figure 2 for some examples. The next
result states the connection between symmetric chain decompositions and the strong Sperner property.

Theorem 3 ([15, Lemma 5.1.1 and Theorem 5.1.4]) If a graded poset admits a symmetric chain decom-
position, then it is strongly Sperner, rank-symmetric, and rank-unimodal.

Graded posets that are strongly Sperner, rank-symmetric, and rank-unimodal are sometimes called
Peck [31]. We further recall that the existence of a symmetric chain decomposition and the Peck property
are both preserved under taking direct products.

Theorem 4 ([1, Theorem 3.6.1],[17]) If P andQ are two posets that admit a symmetric chain decompo-
sition, then so does their direct product P ×Q.

Theorem 5 ([10, Theorem 1],[23, Theorem 3.2]) The direct product of two Peck posets is also Peck.

2.2 Complex Reflection Groups
A reflection is a unitary transformation t on an n-dimensional complex vector space V that has finite
order and fixes a subspace of V of codimension 1, the so-called reflecting hyperplane associated with t. A
complex reflection group is a finite subgroupW of the group of all unitary transformations on V generated
by reflections. If W does not preserve a proper subspace of V , then W is irreducible, and the rank of W
is the codimension of the space fixed by W . An irreducible complex reflection group is well-generated if
it has rank n and can be generated by n reflections.

According to the classification of irreducible complex reflection groups due to G. C. Shephard and
J. A. Todd [26], there exists one infinite family of such groups, parametrized by three integers d, e, n,
whose members are usually denoted by G(de, e, n), as well as 34 exceptional groups, usually denoted
by G4, G5, . . . , G37. The groups G(de, e, n) can be realized as groups of monomial (n × n)-matrices,
i.e. matrices with a unique non-zero entry in each row and in each column. For a monomial matrix to
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belong to G(de, e, n) its non-zero entries need to be (de)th roots of unity, while the product of all its non-
zero entries needs to be a dth root of unity. Consequently these groups possess a wreath product structure,
see [19, Chapter 2.2] for the details. It follows from [22, Table 2] that there are three infinite families of
well-generated irreducible complex reflection groups, namely G(1, 1, n) for n ≥ 1, G(d, 1, n) for n ≥ 1
and d ≥ 2, and G(d, d, n) for n, d ≥ 2, as well as 26 well-generated exceptional irreducible complex
reflection groups.

2.3 Coxeter Elements

A vector v ∈ V is regular if it does not lie in any of the reflecting hyperplanes of W . If ζ is an eigenvalue
of w ∈ W , and the corresponding eigenspace contains a regular vector, then we say that w is ζ-regular.
The multiplicative order d of ζ is a regular number for W . The ζ-regular elements of W form a single
conjugacy class [29, Theorem 4.2].

A distinctive property of complex reflection groups is the fact that its algebra of invariant polynomials is
again a polynomial algebra [11, 26]. The degrees of a homogeneous choice of generators of this algebra
yields a sequence of group invariants, the degrees of the group. If W is a well-generated irreducible
complex reflection group, then it follows from [18, Theorem C] that the largest degree is always a regular
number for W , and we denote it by h. In that case we define a Coxeter element of W to be any ζ-regular
element of order h for some hth root of unity ζ [25, Definition 1.19].

2.4 Noncrossing Partitions

Let W be a well-generated irreducible complex reflection group, and let T ⊆ W denote the set of all
reflections of W . The absolute length of w ∈W is defined by

`T (w) = min{k | w = t1t2 · · · tk for ti ∈ T}, (1)

and the absolute order on W is the partial order ≤T defined by

u ≤T v if and only if `T (v) = `T (u) + `T (u
−1v), (2)

for all u, v ∈W . For any Coxeter element γ ∈W , define the set of W -noncrossing partitions by

NCW (γ) = {u ∈W | ε ≤T u ≤T γ}, (3)

where ε denotes the identity ofW . The posetNCW (γ) =
(
NCW (γ),≤T

)
is the lattice ofW -noncrossing

partitions, and its structure does not depend on the choice of γ as the next result shows. We thus suppress
the Coxeter element in the notation whenever it is not necessary.

Proposition 6 ([25, Corollary 1.6]) LetW be a well-generated irreducible complex reflection group, and
let γ, γ′ ∈W be two Coxeter elements. The corresponding posetsNCW (γ) andNCW (γ′) are isomorphic.

We refer the reader to [21, Section 2.4] for a historical account on the verification of the lattice property
of NCW , as well as a list of other properties of this poset.
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3 Decompositions of NCG(d,d,n)
3.1 The Setup
In this section, we focus on the well-generated irreducible complex reflection group G(d, d, n) for some
fixed choice of d, n ≥ 2. Recall from Section 2.2 that the elements of G(d, d, n) can be realized as
monomial (n × n)-matrices whose non-zero entries are dth roots of unity and where the product of all
non-zero entries is 1. In this representation, we can view G(d, d, n) as a subgroup of the symmetric group
Sdn acting on the set{

1(0), 2(0), . . . , n(0), 1(1), 2(1), . . . , n(1), . . . , 1(d−1), 2(d−1), . . . , n(d−1)
}

of n integers with d colors, where k(s) represents the column vector which has zeros in each entry except
the kth one, and the kth entry is ζs for some primitive dth root of unity ζ. Each w ∈ G(d, d, n) satisfies

w
(
k(s)

)
= π(k)(s+tk) and

k∑
i=1

tk ≡ 0 (mod d),

where π ∈ Sn and the numbers tk depend only onw and k. (Here, addition in the superscript is considered
modulo d.) More precisely, the permutation π is given by the permutation matrix that is derived from w
by replacing each non-zero entry by 1, and the number tk is determined by the non-zero value in position
(k, π(k)) of w. Consequently, we can decompose the elements of G(d, d, n) into generalized cycles of
the following form((

k
(t1)
1 . . . k(tr)r

))
=
(
k
(t1)
1 . . . k(tr)r

)(
k
(t1+1)
1 . . . k(tr+1)

r

)
· · ·
(
k
(t1+d−1)
1 . . . k(tr+d−1)r

)
,

and [
k
(t1)
1 . . . k(tr)r

]
s
=
(
k
(t1)
1 . . . k(tr)r k

(t1+s)
1 . . . k(tr+s)r . . . k

(t1(d−1)s)
1 . . . k(tr+(d−1)s)

r

)
,

for s ∈ [d−1]. We call the first type a short generalized cycle and the second type a long generalized cycle,
and we usually suppress the subscript 1. In what follows we consider the Coxeter element γ ∈ G(d, d, n)
given by the product of the two long generalized cycles

γ =
[
1(0) 2(0) . . . (n− 1)(0)

][
n(0)

]
d−1

. (4)

See for instance [20, Section 3.3] for a justification that this is indeed a Coxeter element of G(d, d, n).
The next lemma characterizes the set Tγ = T ∩NCW (γ).

Lemma 7 ([20, Proposition 3.6]) Let γ be the Coxeter element of G(d, d, n) as defined in (4). Then we
have

Tγ =
{((

a(0) b(s)
))
| 1 ≤ a < b < n, s ∈ {0, d− 1}

}
∪
{((

a(0) n(s)
))
| 1 ≤ a < n, 0 ≤ s < d

}
.
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3.2 A First Decomposition
It is the goal of this abstract to prove that the posets NCG(d,d,n)(γ) admit a symmetric chain decompo-
sition, and we accomplish this by generalizing the core idea of [27, Theorem 2]. There R. Simion and
D. Ullmann prove that NCG(1,1,n)(c) admits a symmetric chain decomposition where c = (1 2 . . . n)

is a long cycle in G(1, 1, n) ∼= Sn. For i ∈ [n] define Ri =
{
u ∈ NCG(1,1,n)(c) | u(1) = i

}
, and let

Ri = (Ri,≤T ). Moreover, let 2 denote the 2-element chain. We have the following result.

Theorem 8 ([27, Theorem 2]) For n > 0 we have NCG(1,1,n)(c) =
⊎n
i=1Ri. Moreover, we have R1 ]

R2
∼= 2 ×NCG(1,1,n−1) and Ri ∼= NCG(1,1,i−2) ×NCG(1,1,n−i+1) for 3 ≤ i ≤ n. This decomposition

is symmetric.

An immediate consequence of Theorem 8 is that NCG(1,1,n) admits a symmetric chain decomposition.
Recall from Section 3.1 that G(d, d, n) can be realized as a subgroup of Sdn permuting n integers in
d colors. Therefore we define R(s)

i =
{
u ∈ NCG(d,d,n)(γ) | u

(
1(0)
)
= i(s)

}
for i ∈ [n] and s ∈

{0, 1, . . . , d − 1}. This is obviously a decomposition of NCG(d,d,n)(γ), but quite a lot of these parts are
actually empty. The proof of the next statement can be found in [21]*Lemma 3.6.

Lemma 9 The sets R(s)
1 and R(s′)

i are empty for 2 ≤ s < d as well as 2 ≤ i < n and 1 ≤ s′ < d− 1.

The next lemma describes the isomorphism type of the subposets of NCG(d,d,n)(γ) induced by the
nonempty sets R(s)

i . Let us abbreviate R(s)
i =

(
R

(s)
i ,≤T

)
. The proof of this statement is rather straight-

forward and thus omitted. See [21, Lemmas 3.7–3.12] for the details.

Lemma 10 The nonempty sets R(s)
i induce the following subposets of NCG(d,d,n)(γ).

(i) The poset R(0)
1 ]R

(0)
2 is isomorphic to 2×NCG(d,d,n−1). Moreover, its least element has length 0

and its greatest element has length n.

(ii) The poset R(s)
n is isomorphic to NCG(1,1,n−1) for 0 ≤ s < d. Morever, its least element has length

1 and its greatest element has length n− 1.

(iii) The posetR(0)
i is isomorphic toNCG(d,d,n−i+1)×NCG(1,1,i−2) whenever 3 ≤ i < n. Moreover, its

least element has length 1 and its greatest element has length n− 1.

(iv) The posetR(d−1)
i is isomorphic toNCG(1,1,n−i)×NCG(d,d,i−1) whenever 3 ≤ i < n. Moreover, its

least element has length 1 and its greatest element has length n− 1.

(v) The posetsR(1)
1 andR(d−1)

2 are both isomorphic toNCG(1,1,n−2). In the first case the least element
has length 2 and the greatest element has length n − 1, while in the second case the least element
has length 1 and the greatest element has length n− 2.

We observe that the induced subposetR(1)
1 ]R

(d−1)
2 ofNCG(d,d,n)(γ) is disconnected, see for instance

Figure 3. (In this example R(1)
1 consists only of the coatom

[
1(0)
][
3(0)
]
4
, and R(4)

2 consists only of the

atom
((

1(0) 2(4)
))

, and these two elements are incomparable.) Furthermore, since both R(1)
1 and R(d−1)

2

do not sit in NCG(d,d,n)(γ) symmetrically, this decomposition is not a suitable starting point to obtain a
symmetric chain decomposition of NCG(d,d,n)(γ). We overcome this issue in the next section.
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3.3 A Second Decomposition

It is straightforward to verify thatR(1)
1 has least element

[
1(0)
][
n(0)

]
d−1

and greatest element[
1(0)
][
n(0)

]
d−1

((
2(0) . . . (n− 1)(0)

))
.

Therefore the map x 7→
((

1(0) n(d−2)
))
x is an isomorphism fromR(1)

1 to the interval

E1 =
[((

1(0) n(d−1)
))
,
((

1(0) n(d−1)
))((

2(0) . . . (n− 1)(0)
))]

T

in NCG(d,d,n)(γ), which is isomorphic to NCG(1,1,n−2) in its own right.

Analogously, we can show thatR(d−1)
2 has least element

((
1(0) 2(d−1)

))
and greatest element((

(1(0) 2(d−1) . . . (n− 1)(d−1)
))
.

Therefore the map x 7→
((

2(0) n(0)
))
x is an isomorphism fromR(d−1)

2 to the interval

E2 =
[((

1(0) n(d−1) 2(d−1)
))
,
((

1(0) n(d−1) 2(d−1) . . . (n− 1)(d−1)
))]

T

in NCG(d,d,n)(γ), which is again isomorphic to NCG(1,1,n−2).
We observe that E1 and E2 are disjoint subsets of R(d−1)

n , and therefore we may define D1 = R
(1)
1 ]

E1, D2 = R
(d−1)
2 ]E2, and D = R

(d−1)
n \

(
E1 ]E2

)
, as well asD1 =

(
D1,≤T

)
,D2 =

(
D2,≤T

)
, and

D =
(
D,≤T ). The following lemma is now immediate.

Lemma 11 For d, n ≥ 2, we have D1]D2]D = R
(1)
1 ]R

(d−1)
2 ]R(d−1)

n . More precisely, D1
∼= D2

∼=
2×NCG(1,1,n−2), and the least element in D1 and D2, respectively, has length 1, while the greatest ele-
ment inD1 andD2, respectively, has length n−1. Furthermore,D ∼=

⊎n−1
i=3

(
NCG(1,1,i−2) ×NCG(1,1,n−i)

)
,

and this decomposition is symmetric within NCG(d,d,n)(γ).

We obtain the following result, which is illustrated in Figure 3.

Theorem 12 For d, n ≥ 2 the decomposition

NCG(d,d,n)(γ) = R
(0)
1 ]R

(0)
2 ]

n−1⊎
i=3

(
R

(0)
i ]R

(d−1)
i

)
]
d−2⊎
s=0

R(s)
n ]D1 ]D2 ]D (5)

is symmetric. Consequently NCG(d,d,n)(γ) admits a symmetric chain decomposition.

Proof: This follows from Lemmas 10 and 11. The claim on the existence of a symmetric chain decom-
position now follows by induction on n using Theorems 4 and 8 and Proposition 6. 2

Proof of Theorem 1: Theorem 12 establishes the claim for the fixed Coxeter element γ from (4), and in
view of Proposition 6, the claim holds for any Coxeter element of G(d, d, n). 2
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((
1(0)
))

((
2(0) 3(0)

)) ((
1(0) 3(0)

)) ((
1(0) 2(4)

)) ((
1(0) 3(4)

)) ((
2(0) 3(1)

)) ((
2(0) 3(4)

)) ((
1(0) 3(1)

)) ((
1(0) 3(3)

)) ((
2(0) 3(2)

)) ((
1(0) 2(0)

)) ((
2(0) 3(3)

)) ((
1(0) 3(2)

))

((
1(0) 2(0) 3(0)

))((
1(0) 3(4) 2(4)

)) [
1(0)
][
3(0)
]
4

((
1(0) 3(0) 2(4)

))((
1(0) 2(0) 3(4)

))((
1(0) 2(0) 3(1)

))((
1(0) 3(3) 2(4)

))((
1(0) 3(1) 2(4)

))((
1(0) 2(0) 3(3)

)) [
2(0)
][
3(0)
]
4

((
1(0) 2(0) 3(2)

))((
1(0) 3(2) 2(4)

))

[
1(0) 2(0)

][
3(0)
]
4

Fig. 3: The lattice NCG(5,5,3)

([
1(0) 2(0)

][
3(0)
]
4

)
. The symmetric chain decomposition coming from (5) is high-

lighted.

4 The Remaining Cases
Recall that there are three infinite families of well-generated irreducible complex reflection groups, namely
G(1, 1, n) for n ≥ 1, G(d, 1, n) for d ≥ 2, n ≥ 1, and G(d, d, n) for d, n ≥ 2, as well as 26 exceptional
well-generated complex reflection groups. Theorem 8 states that there exists a symmetric chain decompo-
sition for NCG(1,1,n), and we have proven in Theorem 1 that the same is true for NCG(d,d,n). What about
the other well-generated complex reflection groups? Recall a few more results.

Theorem 13 ([24, Theorem 13]) The latticeNCG(2,1,n) admits a symmetric chain decomposition for any
n ≥ 1.

The next result follows from [5, Proposition 8.5] and [8, Table 1].

Proposition 14 For d ≥ 2, n ≥ 1, we have NCG(d,1,n)
∼= NCG(2,1,n). Moreover, we have NCG25

∼=
NCG(1,1,4), NCG26

∼= NCG(2,1,3), and NCG32
∼= NCG(1,1,5).

To verify whether or not a poset admits a symmetric chain decomposition by computer is usually a
very time-consuming task, and we could only succeed to prove this property for noncrossing partition
lattices associated with exceptional well-generated complex reflection groups of rank at most 3. However,
SAGE has an efficient algorithm to determine the maximum size of an antichain (or the width) of a given
poset, and it is thus possible to check by computer if a poset is Sperner. In what follows we describe
a strategy to reduce the question whether a poset is strongly Sperner to successively checking whether
certain subposets are Sperner. In particular, this yields a feasible strategy to check whether a poset is
strongly Sperner by computer.

Let P = (P,≤) be a graded poset of length n with rank vector NP = (N0, N1, . . . , Nn). There
is certainly some r ∈ {0, 1, . . . , n} such that Ni ≤ Nr for all i ∈ {0, 1, . . . , n}. (This r need not be
unique.) Let R = {p ∈ P | rk(p) = r}, and define P[1] = (P \ R,≤). Moreover, define P[0] = P and
P[i] =

(
. . .
((
P [1]

)
[1]
)
. . .
)
[1]︸ ︷︷ ︸

i

. In other words, P[i] is the poset that is created from P by removing the

i largest ranks, and is consequently a graded poset in its own right. Clearly, P[s] is the empty poset for
s > n. We have the following result.
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Proposition 15 A bounded poset P with `(P) = n is strongly Sperner if and only if P[i] is Sperner for
each i ∈ {0, 1, . . . , n}.

The weaker statement “P is k-Sperner if and only if P[i] is Sperner for each i ∈ {0, 1, . . . , k}” is not
true, as for instance the example in Figure 2 shows. If the poset in Figure 2(b) is denoted by P , then the
poset in Figure 2(c) is P[1]. We observe that P is 1-Sperner, but P[1] is not. Now we conclude the proof
of Theorem 2.

Proof of Theorem 2: First suppose that W is irreducible. Theorem 3 implies together with Theorems 8,
1, 13, and Proposition 14 that NCW is Peck, i.e. strongly Sperner, rank-symmetric, and rank-unimodal,
whenever W is isomorphic to G(1, 1, n) for n ≥ 1, to G(d, d, n) for d, n ≥ 2, or to G(d, 1, n) for
d ≥ 2, n ≥ 1. The exceptional cases have been verified by computer using Proposition 15.

IfW is reducible, then we haveW ∼=W1×W2×· · ·×Ws for some well-generated irreducible complex
reflection groupsWi, and we can define a noncrossing partition lattice forW byNCW ∼= NCW1

×NCW2
×

· · · × NCWs
. The claim now follows from Theorem 5. 2

References
[1] I. Anderson. Combinatorics of Finite Sets. Dover Publications, Mineola, NY, 2002.

[2] D. Armstrong. Generalized Noncrossing Partitions and Combinatorics of Coxeter Groups. Mem.
Amer. Math. Soc., 202, 2009.

[3] C. A. Athanasiadis and V. Reiner. Noncrossing Partitions for the GroupDn. SIAM J. Discrete Math.,
18:397–417, 2004.

[4] D. Bessis. The Dual Braid Monoid. Ann. Sci. École Norm. Sup., 36:647–683, 2003.
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