FPSAC 2016 Vancouver, Canada DMTCS proc. BC, 2016, 1075-1086

Relaxations of the matroid axioms I:
Independence, Exchange and Circuits

José Alejandro Samper'f

Y Department of Mathematics, University of Washington, Seattle, USA

Abstract. Motivated by a question of Duval and Reiner about higher Laplacians of simplicial complexes, we describe
various relaxations of the defining axioms of matroid theory to obtain larger classes of simplicial complexes that
contain pure shifted simplicial complexes. The resulting classes retain some of the matroid properties and allow us
to classify matroid properties according to the relevant axioms needed to prove them. We illustrate this by discussing
Tutte polynomials. Furthermore, we extend a conjecture of Stanley on h-vectors and provide evidence to show that
the extension is better suited than matroids to study the conjecture.

Résumé. Motivé par une question de Duval et Reiner concernant les Laplaciens d’ordres supérieurs des complexes
simpliciaux, nous décrivons certaines relaxations des axiomes de la théorie des matroides afin d’obtenir des familles
plus grandes de complexes simpliciaux qui contiennent les complexes simpliciaux pures décalés. Les classes obtenues
conservent certaines propriétés des matroides et nous permettent de classifier les propriétés des matroides selon les
axiomes nécessaires pour les démontrer. Nous illustrons ceci a I’aide des polyndmes de Tutte. De plus, nous étendons
une conjecture de Stanley concernant les h-vecteurs et supportons 1I’énoncé par des preuves montrant que I’extension
est mieux adaptée a la conjecture que les matroides.
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1 Introduction

Matroid independence complexes and shifted simplicial complexes are two remarkable classes of simpli-
cial complexes that appear naturally in several areas of mathematics. Matroids play a prominent role in
the study of vector configurations, linear optimization, graph theory, matching theory, intersection theory
in Grassmannians and various other places. The aim of matroid theory is to provide an abstract notion of
independence in mathematics. On the other hand, shifted complexes play a prominent role in the com-
binatorial theory of simplicial complexes. Several different operations have been defined for simplicial
complexes that map a complex A to a shifted complex A® in a way that preserves f-vectors, Cohen-
Macaulayness and more properties.

A surprising similarity between the two classes comes from the theory of combinatorial Laplacians. Let
Ce(A) be the simplicial chain complex of a simplicial complex A over the real numbers. The homological
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boundary and coboundary maps, 0 and 4, are adjoint maps in each degree with respect to the face basis.
The k-Laplacian L = 96 + 00 of A is a self-adjoint map and therefore, has real eigenvalues. It is natural
to ask if there is some relationship between the eigenvalues of Lj, and the combinatorial properties of A.

It was shown in a series of papers (Kook et al.| (2000); Duval and Reiner (2002); [Kook| (2004); |Duval
(2005)) that the eigenvalues of the Laplacians of both matroid independence and shifted simplicial com-
plexes are integers and satisfy a special kind of recurrence similar to the deletion-contraction recurrence
of the Tutte polynomial of a matroid. The proofs of the theorem are very different for both classes. Since
having integral Laplacian spectrum is a remarkably rare property, Duval and Reiner asked the following.

Question 1.1 (Reiner| (2001); Duval and Reiner (2002); Duval| (2014)) Is there a class of simplicial com-
plexes that contains matroid independence and shifted simplicial complexes and explains the integral
Laplacian phenomenon?

In this manuscript we will discuss the first steps in the construction of a class of simplicial complexes
that will hopefully answer Question affirmatively. The basic idea is to work with ordered simplicial
complexes and relax some of the different axiomatizations of matroid theory. The goal is to enlarge the
class of matroids so it contains pure shifted simplicial complexes. The goal of this note is to give a brief
presentation of such extensions for the following axioms: independence, exchange and circuits. Other
extensions, such as semimodular functions and greedy algorithms, will be discussed in various upcoming
projects.

The relaxations give a measure of the “complicatedness” of several matroid properties according to how
many of the axioms are required to obtain an analogue. We show that the relaxations of the exchange and
the circuit axioms allow us to define activity theories and get an analogue of the Tutte polynomial that
satisfies an ordered deletion-contraction recursion.

Another virtue of our theory is that it allows us to transfer questions about matroids to analogous questions
about shifted complexes. Proving theorems for shifted complexes is easier in general and one might try to
imitate techniques for shifted complexes in the context of matroid theory. We illustrate this by providing
a refinement of a classical conjecture of Stanley about h-vectors of matroids.

Conjecture 1.2 (Stanley|(1977)) The h-vector of a matroid is a pure O-sequence.

This says that if (hg, h1, ..., hq) is the h-vector of a matroid, then there exists a family O of monomials
that is closed under divisibility with exactly h; monomials of degree 7 and such that every monomial in
O divides a maximum degree monomial in O. Such a family is called a pure multicomplex. It is just a
multicomplex if the last condition is ignored.. The hard part of Stanley’s conjecture is to show purity. In
fact, [Stanley| (1977) proved that such h-vectors count degrees in multicomplexes using Stanley-Reisner
theory and the theory of Cohen-Macaulay rings.

The conjecture is still wide open despite of the big effort put into finding a solution. Several special cases
are known: cographical matroids Merino| (2001)), paving matroids Merino et al.| (2012), cotransversal
matroids |Oh| (2013), positroids |Oh| (2011), rank 3 and corank 2 matroids [De Loera et al| (2012)), rank
d matroids with 1 < hy < 5 Constantinescu et al.| (2014) and the recently defined class of internally
perfect matroids Dall| (2015). The rank 4 case was proved in |[Klee and Samper (2015) by providing
a combinatorial recipe to construct the multicomplex that comes from an h-vector decomposition. We
provide an analogue of that h-vector decomposition for complexes satisfying the relaxations of exchange
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and independence and use it to extend the combinatorial conjecture to one about complexes satisfying
both relaxations. We then prove the new conjecture for shifted complexes and speculate about the general
solution. The advantage of our method is that we can induct on the number of facets which is a technique
that is out of reach within the confines of matroid theory.

This note is organized as follows. In Section 2] we introduce the objects we are going to study. In Section
[B] we discuss the relaxations of the axioms and mention some of their properties. In Section [ we discuss
the theory of Tutte polynomials and in Section [5] we discuss the relationship between the relaxations and
Stanley’s conjecture.

2 Preliminaries

An ordered simplicial complex is a pair U = (E, A) where E is a totally ordered finite set and A is a pure
simplicial complex whose vertex set is a subset of E. We will use matroid theory terminology. Faces of
A are called as independent sets. Facets, i.e maximal under inclusion independent sets, are called bases.
The set of bases is denoted by B. It is useful to order 5 lexicographically using the order of E. The
smallest lexicographic basis is denoted by By. Minimal non-faces are called circuits. The set of circuits
is denoted by C. The rank of WU is the size of any element of 3. We usually reserve d to denote the rank
of U.

A loop of U is an element of FE that is not in any basis. A coloop is an element of U that is in every
basis. For A C E, define the restriction U| 4 to be the pair (4, Al4), where Ay ={I € A : I C A}
The deletion W\{e} of an element e that is not a coloop is the restriction to E\{e}. The contraction
U /{e} of an element e that is not a loop is the complex (F — {e},Linka (e)). The contraction ¥ /I of
an independent set I is the complex that results from contracting the vertices of I in any order. For an
independent set I, let By o be the smallest lexicographic basis of W\ 1. The complex ({e}, {0}) is denoted
by ¥;,0p and the complex ({e}, {0, {e}}) is denoted by ¥ o/00p-

Given a basis B and an element e € E\ B, we say that e is externally active if there is a circuit C' C BU{e}
such that e is the smallest element of C. We say that e is externally passive otherwise. The sets of
externally active and passive elements of B are denoted by FA(B) and E P(B) respectively. An element
b € Bis called internally active if B is the smallest lexicographic basis that contains B\{b}. Equivalently,
there is no ¥’ < b that is not in B and such that (B\{b}) U {¢'} € B. An element is internally passive
otherwise. The sets of internally active and passive elements of B are denoted by I A(B) and IP(B)
respectively.

A broken circuit is an element of the form C' — {c}, where C' € C and c is the smallest element of ¢. The
nbc-complex nbe(W) of U is the complex (F,T'), such that the bases of nbc(M) are the bases of ¥ that
don’t contain a broken circuit.

The Gale order, <, of an ordered complex W is an order on the set of basis that is given as follows: if B
and B’ are bases with elements by < by, -+ < bg and b] < by < --- < ) respectively, then B < B’ if
and only if b; < b} for every 4. The poset (B, <) is denoted by Gale(T).

An ordered complex U is an ordered matroid if whenever I; and I are independent sets such that |I;| >
|I2| then there is an element ¢ € I;\ I such that Io U {i} € A. A simple consequence of matroid duality
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(e.g see|Gel'fand et al.|(1987)) is that Gale(¥) has a minimum and a maximum whenever ¥ is an ordered
matroid. There are other axioms defining matroids. Later, we will define the relaxed version in which the
order of F is used in some way. In each case, the original matroid axiom is the same as the relaxed one
except for the condition using the order of £, which should be ignored.

An ordered complex V is shifted if every independent I and ¢ € I satisfy the following: for every j € E
smaller than i, the set I\{i} U {j} is independent. An equivalent formulation is that an ordered complex
U is shifted if an only if Gale(W) is isomorphic to an order ideal of Young’s lattice of integer partitions. It
is a theorem of Klivans|(2003) that a shifted complex is a matroid if and only if Gale(¥) has a maximum.

The f-vector of arank d complex ¥ is the vector ( fo, fo, . - ., fa) where f; is the number of independents
of rank ¢ (or dimension ¢ — 1). Notice that fy = 1. The h-vector (hy, ..., hq) of ¥, which is sometimes
more convenient when studying complexes through the lens of commutative algebra, is given by the
following polynomial relation

d d
WO, x) = hja! =3 fat/(1—t)* . (1)
=0 j=0

A shelling order of a complex V is an order By, ... By of the bases such that for every ¢ < j there is
k < jand b € B; such that B, N B; C By N B; = B;\{b}. We say that ¥ is shellable if it admits a
shelling order. If By < --- < Bj is a shelling order, then for every j there is a unique subset R(B;) of
Bj such that R(B;) € B; for any 7 < j. It turns out that

k
hU,z) = Zm‘R(Bm. (2)
j=1

For two sets A, B let AA B be their symmetric difference, i.e, the set (A\B)U(B\ A). Whenever a subset
of a small set is considered we drop parethensis and commas to simplify notation. For example, the subset
{2,4} of {1,2,3,4,5} is denoted by 24.

3 The relaxed axioms

We begin by defining the three axioms that we will discuss in this manuscript. The fact that matroids
satisfy these axioms is straightforward, while their verification for pure shifted complex is a simple fun
exercise.

Definition 3.1 Ler ® = (E, A) be an ordered simplicial complex. The following relaxations of the axioms
are defined.

e Weak Independence Axiom (WIA): For every pair of independent sets I, I, if |I1]| > |I2| and
I\I C By for some I C I N Iy, then there exists e € 11\ such that I U {e} is independent.

e Weak Exchange Axiom (WEA): For every pair By, Bs of bases of A\, and by € B\ Bs such that
by > max BQ\Bl, then there is a by € BQ\Bl such that (Bl\{bl}) U {bQ} e A.
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e Weak Circuit Axiom (WCA): If C1, Cs are distinct circuits (E, A) and ¢ € C1 N Cy such that
¢ < max C1 ACy, then there is a circuit C3 of (E, A) contained in C; U Cy — c.

In matroid theory, all the axioms produce the same class of objects, on the other hand, the relaxed axioms
produce different classes. The following theorem serves as an interesting example.

Theorem 3.2 The three relaxations produce distinct classes of simplicial complexes. None of the axioms
is implied by another one.

Proof: The one dimensional ordered complex ¥y = ({1,2, 3,4}, A;) with bases 12,13, 14, 34. It satis-
fies WIA, WEA, but the circuits 23, 24 contradicts WCA.

The complex ¥y = ({1,2, 3,4}, Ag) with bases 14,24, 23, 34. It satisfies WIA, but 14 and 23 show it
does not satisfy WEA or WCA.

The complex U3 = ({1,2,3,4}, A3) with bases 12, 13, 23, 34 satisfies WCA, but fails WIA and WEA.

The complex ¥4 = ({1,2,3,4,5}, A4) with bases 13, 14, 23, 24, 25 satisfies WEA, but not WIA or WCA.
O

We already know that there are many examples of objects satisfying each relaxation theory, and in fact,
many satisfy all of them simultaneously. In order to explore more examples, a useful tool in general is to
know how to construct new complexes from old ones satisfying a given axiom. The following theorem
tell us what we can do with each of the axioms, in terms of simplicial joins, restrictions, contractions,
connected sums and taking skeleta.

Theorem 3.3 For each individual axiom, as listed below, we have that the following operations preserve
the property of satisfying the axiom:

o WIA: simplical joins, restrictions to sets A C E such that rk(A) = |[AN By
connected sums along least lex bases, and skeleta.

, contractions,

o WEA: simplicial joins, restrictions to initial segments and contractions.
o WCA: simplicial joins, restrictions that give pure complexes, contractions and skeleta.

One highlight of the next theorem is the following: we know that matroid independence complexes are
characterized as simplicial complexes all of whose restrictions are pure. This can’t possibly be true for
other classes of complexes, but the WIA guarantees that there are still plenty of pure induced subcom-
plexes. We now present a few simple consequences of each of the axioms. For each of the theorems
mentioned below, the proofs are either straightforward, or careful modifications of the analoguous theo-
rem found in |Bjorner| (1992)).

Theorem 3.4 Let U = (E,A) be a complex satisfying WIA. Then A is vertex decomposable and any
vertex that does not belong to By is a shedding vertex. This implies that A is shellable.

Theorem 3.5 Let ¥ = (E,A) be a complex satisfying WEA. Then A is vertex decomposable and the
largest vertex is a shedding vertex. In particular A is shellable. The lexicographic order of the facets is a
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shelling order and for every facet B the set I P(B) is the unique minimal subset of B not contained in a
lexicographically smaller basis. Therefore we have that

h(¥,z) = Z LPB), 3)

BeB

Theorem 3.6 Let U = (E, A) be a complex satisfying WCA. If B is a facet and e € E — B is externally
active, then there is a unique circuit contained in B U {e}.

In particular, each of the relaxations of the axioms resembles a part of matroid theory. While each of the
relaxations is interesting, the real power of the theory shows up when we start considering combinations
of the axioms. This gives a hierarchy for the ‘complicatedness’ of matroid properties, i.e, we can classify
several matroid properties according to the relevant axioms that are required to prove analogues in the
weak setting.

For the rest of the manuscript we focus on two aspects of matroid theory that admit interesting general-
izations to the weak setting: Tutte polynomials and the structure of h-vectors.

4 Tutte polynomials

Let S denote the class of complexes satisfying WCA and WEA and R be a commutative ring with unity.
An invariant f is a map that associates to every complex ¥ of S an element f(V) € R. A TG-invariant
is an invariant that satisfies the following recurrence:

4
f(¥/e) + f(P\e) if e is the largest vertex that is not a coloop. @

F(Teer) f(P|grer) if e is aloop or a coloop,
(M) = { {e} \{e}
There are several natural TG-invariants. For example, the number of faces, bases, the reverse f-polynomial
and reverse h-polynomials are TG-invariants. Furthermore, for every W in S, the underlying complex of
nbc(W) is shellable and the polynomial t?h(nbc(¥), 1) is a TG-invariant. It turns out that there is a
polynomial that governs all TG-invariants.

Definition 4.1 Let VU be a complex in S. The Tutte polynomial of V is defined to be
T(8,2,9) = Y al APy EAD, ®
BeB

Theorem 4.2 The Tutte polynomial is a TG-invariant that is universal in the following sense: if f is a
TG-invariant in the class S, then for every W in S we have that

f(\I]) = T(\Ilv f(\:[jcoloop)v f(\Illoop)) (6)

The previous statement explains how the relaxations of the complexes tell that the Tutte polynomial in
classical matroid theory is actually an invariant to be attributed to the circuit and exchange axioms. The
proofs of these theorems rely heavily on the consequences of the relaxations, i.e Theorems and
3.6l
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5 h-vectors and Stanley’s conjecture

Our starting point is the proof for rank 4 matroids in which a combinatorial approach to constructing a
multicomplex was suggested. We begin with an h-vector decomposition that has a nice combinatorial
interpretation. Given a complex ¥ = (F,A) and a set A C FE, every face F' of A can be split in two
pieces: F'N A and F'\ A. We can partition the faces according to their part not in A. Forany F € Alg_ 4,
consider the order complex ¥4 p := (A,A4 r) = (V/F)|a. Here Ay p = (Linka F')| 4. Then the set
of faces of A is the (disjoint) union of the faces of the A 4 r sets and writing this in terms of ~-polynomials
we get the following lemma.

Lemma 5.1 Given A C E, we have that

WA )= Y (1 —a) T FD=karp (A, p, ). (7)
FEA!p a

In particular, if rkA s p = d — |F| for every F' € A|p\ 4, we get that
h(A,z) = Z e FIh(A s p, ). (8)
FEAlE\A
This decomposition can be studied as related to shifted complexes.

Corollary 5.2 If V is a complex satisfying WEA or WIA, and A is a subset of E that contains By such
that | 4 is pure, then the decomposition @) of h(A, x) is satisfied.

We now relate the h-polynomial with internal activities and discuss a few facts about a poset analogue to
the <;,,;: poset on the set of bases of an ordered matroid as defined in|Las Vergnas|(2001). From now on,
all complexes U satisfy WEA and WIA.

Definition 5.3 The <;,;: poset on the set BB of basis is defined by By <;n: Bo if and only if IP(By) C
I1P(Bs).

A further interesting class that contains ordered matroids and shifted complexes concerns the smallest
lexicographic bases. In particular, recall that By denotes the smallest lexicographic basis of ¥ and B, o
denotes the smallest lexicographic basis of ¥ /v.

Definition 5.4 An complex U = (E, A) is said to satisfy the First Facet Property, abbreviated to FFP, if:
i. The rank of ¥ = 0, or
ii. U has exactly one basis, or
iii. For every vertex v of U, the contraction U /v satisfies FFP and B, o C By.

It is a consequence of Lemma 2.4 in [Dall (2015)) that ordered matroids satisfy FFP and it is straightfor-
ward to verify the same statement for shifted complexes. The following theorem gives a combinatorial
interpretation of Corollary [5.2] whenever the complex satisfies WEA, WIA and FFP.

Theorem 5.5 Assume that V satisfies WEA, WIA and FFP. Then for every basis B,
IP(B)=FUIP(B\F,¥p, r). 9
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Similar results were used in |[Klee and Samper| (2015)) to provide a combinatorial conjecture that implies
Stanley’s conjecture for matroids. We are now ready to present a relaxation of Stanley’s conjecture. It is
stated for a larger class of simplicial complexes and opens the door to various inductive techniques that
are out of reach within matroid theory. We expect the technique of induction on the number of bases to
have a variety of applications different from Stanley’s conjecture.

Conjecture 5.6 There exists a map F from the class of ordered simplicial complexes satisfying WEA,
WIA and FFP to the class of multicomplexes, such that the multicomplex F (V) satisfies the following:

i. The set of variables appearing in F (V) is {x; : i is a vertex of A|(g\ By)}-

ii. The monomials of F (W) are in bijection with bases of U, in such a way that:
(a) for every basis B the monomial associated under the bijection is denoted by mp,
(b) the degree of mp equals to |IP(B)]|,
(c) the support of mp, i.e the set {e € E : x.|mp}, is equal to B\ By.

iii. If By < Bginthein Gale(V) and B1\By C Bo\ By, then there is B3 < Bs such that |IP(Bs)| =
|IP(Bs)| and mp,|mp,.

iv. The poset on B such that B < B’ if and only if mg|mp: is an extension of <;n: and is extended by
Gale().

v. If A C F contains By, then F(¥|4) C F(P).
We now provide a few results that aim to support the validity of the conjecture.

Theorem 5.7 Assume that the map F of Conjecture|[5.6|exists for the class of all rank-d complexes satis-
fying WIA,WEA and FFP with |E| < 2d — 1. Then Conjectureholds for rank-d complexes.

Since the Gale diagram of every matroid has a maximum, condition 7ii. of Conjecture [5.6]implies Stan-
ley’s conjecture. In fact, this conjecture is a combinatorial version of the classification of h-vectors of
Cohen-Macaulay complexes for the class of complexes satisfying WEA, WIA and FFP. It was originally
proposed for matroids by [Klee and Samper| (2015)), where it was shown for matroid of rank at most 4.
Internally perfect matroids defined by |Dall| (2015)) satisfy the conjecture and are a potential candidate for
a big class of matroids satisfying Conjecture[5.6

It is straightforward to see that every ordered complex whose facets are an order ideal of Gale(¥) satisfies
WIA, WEA and FFP if ¥ does. This opens the doors to do induction on the number of facets of the
complex. This gives another piece of evidence and will hopefully serve as a source of inspiration for the
general case.

Theorem 5.8 Conjecture[5.6|holds for shifted complexes.

Proof: Recall that a rank d complex ¥ = ([n], A) is shifted if and only if it is an order ideal of Young’s
lattice that is below the d x (n — d) box. A facet with vertices vy > vq_1 > -+ - > v; corresponds to the
partition A(B) = A\g > Ag—1 > -+ > Ay, where \; = v; — i (note that \; might be equal to zero for some
7).
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For every such partition A(B), where B is a facet, we will construct a monomial m (d, n). We will drop
B, d,n from the notation when they are clear. Let us make some remarks first:

e TA(B) = [r], where r is the largest number such that [r] C B. This means that | P(B)| = £()\),
the length of \. This gives the degree of m.

e The set of variables of m) are indexed by the set B\[d]. The number of variables is the Durfee
square, i.e the side length of the largest integer square fitting inside the Young diagram of .

This suggests that the construction should be inductive: the rows corresponding to the Durfee square of
A should give the information of the support, and the rows below that should give the exponents of each
variable. In what follows, we will present two different ways to construct the monomial m ), as a statistic
of \.

First we do it inductively. Notice that in small cases the construction is stratightforward (see the example
below). Let Dur(\) denote the partition obtained from A by removing the rows of the Durfee square.
Assume that the side length of the Durfee square is k and let iy < --- < i be vertices of B corre-
sponding to the first k rows. Now Dur(\) is a partition fitting in a (d — k) x k, thus it has a monomial
Tyl 1Ty, - wy” of degree £(\) — k by induction (here some «;; may be zero). The monomial 1,
ar1+1 as+1 ap+1

T x

associated to X is then x; e
1 12 23

There is a pictorial way to represent this in terms of the Young diagram, which we call the bouncing light
construction. Imagine that the Young diagram has mirrors in the vertical boundaries. The left-hand side
mirrors reflect lines parallel to the z-axis in the direction of the diagonal and the right hand side mirrors
reflect lines coming in the direction of the diagonal to lines parallel to the x-axis. Now put a light on the
right-hand side of each row of the Durfee square and shoot the light parallel to the z-axis. For each i; let
B; be the number of times that the light bounces off the left wall and let m) = xfl ! xi 2. mzﬁ k" Then my
is the desired monomial. |

We end this section with two examples that illustrate the constructions.

Example 5.9 Consider the order ideal of the Young lattice fitting into a 3 X 3 box presented in Figure
Depicted in the figure are the Young diagrams. To the left of the diagram are listed the vertices of
the corresponding facet with the variable vertices highlighted in red. Below the facets are the internally
passive sets written in blue. To the right of the diagram is the corresponding monomial written in green.

Example 5.10 Consider the partition (7,7,5,5,3,2,1). It fits into the 7 X 7 box. It corresponds to the
facets {14,13,10,9,7,6,4,4} in any complex it belongs to and the monomial associated is T14735710T3.
The first four rows give the variables.

o The left hand side of the figure shows the inductive construction. The blue square is the Durfee and
the top four rows give the answer. Remaining partition (3,2, 1) should be thought as fitting in 3 X 4
box, thus has a monomial in a subset of the variables x5, xg, x7, xg and then we do an ordered
substitution of variables: rs — x9, g — T10, T7 > T13, T8 > T14.

e The right hand side gives the construction of the bouncing light. The variables x14, x13, %10, X9
correspond to colors red, blue, and light blue respectively.
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246 [ [ Jaiwe 345 2472
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. 3 245 2xs

Fig. 1: An order ideal of the Young lattice

14
13
10

2 2
T5T7 > TgT13

Fig. 2: Two ways to construct: inductively on the left and the bouncing light construction on the right.
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