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Quasi-isomorphisms of cluster algebras and
the combinatorics of webs (extended
abstract)

Chris Fraser †

Department of Mathematics, University of Michigan, Ann Arbor 48109 USA

Abstract. We provide bijections between the cluster variables (and clusters) in two families of cluster algebras which
have received considerable attention. These cluster algebras are the ones associated with certain Grassmannians of
k-planes, and those associated with certain spaces of decorated SLk-local systems in the disk in the work of Fock and
Goncharov. When k is 3, this bijection can be described explicitly using the combinatorics of Kuperberg’s basis of
non-elliptic webs. Using our bijection and symmetries of these cluster algebras, we provide evidence for conjectures
of Fomin and Pylyavskyy concerning cluster variables in Grassmannians of 3-planes. We also prove their conjecture
that there are infinitely many indecomposable nonarborizable webs in the Grassmannian of 3-planes in 9-dimensional
space.

Résumé. Nous fournissons des bijections entre les variables amassées de deux familles d’algébres amassées qui ont
reçu de l‘attention considérable. Ces algébres amassées sont celles associées á certaines grassmanniennes de k -plans
et celles associées á certains espaces de SLk-systèmes locaux décorés sur le disque au sens de Fock et Goncharov.
Lorsque k = 3, cette bijection peut être décrite explicitement en utilisant la combinatoire de la base de Kuperberg
des toiles réduites. Notre bijection, ainsi que certaines symétries de ces algébres amassées, fournit de l‘évidence pour
les conjectures de Fomin et Pylyavskyy concernant les variables amassées dans les grassmanniennes de dimension
3. Nous démontrons aussi leur conjecture qu’il existe une infinité de toiles nonarborizables indécomposables dans la
grassmannienne de 3 -plans dans un espace de dimension 9.
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1 Introduction
Cluster algebras are a rich class of commutative algebras, introduced by Fomin and Zelevinsky [7] in order
to axiomatize constructions (such as canonical bases and totally positive parts) arising in the representation
theory of Lie groups. Speaking briefly, a cluster algebra is a commutative ring endowed with a special set
of generators (called cluster variables) grouped into overlapping sets of the same size (called clusters).
Beginning with a single initial cluster, there is a recursive procedure for producing the remaining clusters
by iterating certain transformations called mutations.
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One of the most familiar examples of a cluster algebra is the coordinate ring C[Ĝr(2, n)] of the affine
cone over the Grassman variety Gr(2, n) of 2-dimensional subspaces in an n-dimensional complex vector
space. This is the ring generated by the Plücker coordinates ∆ij where 1 ≤ i < j ≤ n. The combinatorics
of the clusters is the Catalan combinatorics of triangulations of an n-gon: the set of cluster variables (and
frozen variables, to be defined below) coincides with the set of Plücker coordinates. Picturing each cluster
variable ∆ij by the arc in the n-gon joining vertex i to vertex j, the clusters in C[Ĝr(2, n)] are exactly the
triangulations of the n-gon.

There is a well understood generalization of the cluster algebras C[Ĝr(2, n)] in which the n-gon is
replaced by any surface with boundary and marked points [6, 9]). Beyond this class of examples, there
are very few instances of cluster algebras in which the entire combinatorics of clusters is known. Fomin
and Pylyavskyy [4] have initiated a study of the cluster algebras C[Ĝr(3, n)] using a description in terms
of planar diagrams called non-elliptic webs. There is a conjectural description of the cluster variables
(as indecomposable non-elliptic web invariants that are also arborizable) and of the clusters. For the
Grassmannians Ĝr(3, 5), Ĝr(3, 6), Ĝr(3, 7), Ĝr(3, 8) there are only finitely many cluster variables and the
conjectures can be verified by hand. The Grassmannnian Ĝr(3, 9) is an interesting special case because it
is of finite mutation type. In particular, there should be a large group of symmetries of the cluster structure
on this Grassmannian.

Our main result is a combinatorial realization of such a group of symmetries for C[Ĝr(3, 9)] using webs.
The symmetries arise via the following construction: we produce a quasi-isomorphism of C[Ĝr(3, 9)] with
a certain Fock-Goncharov cluster algebra C[Conf6(SL3)]. This quasi-isomorphism induces a bijection
between the cluster variables in these two cluster algebras. Certain obvious symmetries for C[Conf6(SL3)]
produce “hidden” symmetries of C[Ĝr(3, 9)] under this bijection.

This extended abstract is organized as follows. Section 2 briefly reviews standard cluster algebra defi-
nitions and the standard cluster structure on the Grassmannian. Section 3 introduces web combinatorics
and the connection to cluster algebras via conjectures of Fomin and Pylyavskyy. We end the section by
stating our first two Theorems. Section 4 suggests how these results (and others) are proved, by introduc-
ing a quasi-isomorphism between Grassmannian and Fock-Goncharov cluster algebras. This includes a
description of the group of symmetries. Section 5 introduces webs for SLk when k > 3, and discusses
how certain theorems in the previous section extend to this setting, as well as a connection with the twist
map on the Grassmannian. We close with a brief discussion of future work.

2 Cluster algebra preliminaries
Definition (Ice quiver). An ice quiver is a finite directed graph Q on the the vertex set [1, n+m], without
loops or directed 2-cycles. The vertices n + 1, . . . , n + m are called frozen vertices, and we assume that
there are no edges between frozen vertices. The vertices 1, . . . , n are called mutable vertices.

Let k ∈ [1, n] be a mutable index. The operation of quiver mutation in direction k replaces an ice
quiver Q by a new quiver Q′ = µk(Q). The quiver µk(Q) is obtained from Q by performing three steps:

• For each directed path i → k → j of length two through k in Q, add an arrow i → j (do not
perform this step if both of i and j are frozen).

• Reverse the direction of all arrows incident to vertex k.

• Remove any oriented 2-cycles created in performing the first two steps.
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Definition (Seed). Let F be a field isomorphic to a field of rational functions in n+m variables. A seed
is a pair (Q,x) whereQ is an ice quiver on n+m variables, and x = (x1, . . . , xn;xn+1, . . . , xn+m) is an
extended cluster consisting of elements of F that are algebraically independent and form a transcendence
basis for F . The vertices xn+1, . . . , xn+m are called frozen variables. The set {x1, . . . , xn} is called a
cluster and its elements are called cluster variables.

Again, we let k be a mutable index. The operation of seed mutation in direction k replaces a seed
(Q,x) by a new seed (Q′,x′) where Q′ = µk(Q) and the new cluster variable x′k is satisfies an exchange
relation

x′kxk =
∏
i∈Q

xnumber of arrows i→ k
i +

∏
i∈Q

xnumber of arrows k → i
i . (1)

The remaining x′j are unchanged, i.e. x′j = xj if j ∈ [1, n + m]/{k}. In particular, the frozen variables
are not changed by performing mutations.

Mutating twice in direction k twice in a row is the identity map on seeds.

Definition (Cluster algebra). Starting with a choice of initial seed Σ, the associated seed pattern E is the
collection of seeds which can be obtained by performing an arbitrary sequence of mutations from Σ. The
cluster algebra associated to such a seed pattern is the C-algebra generated by the cluster variables arising
in the seeds of E , along with the frozen varibles.

The collection of seeds in a seed pattern, and therefore the resulting cluster algebra, does not depend on
the choice of initial seed. For a given commutative domainR, we say thatR has a cluster structure if there
is a choice of seed Σ in the fraction field Frac(R) for which the resulting cluster algebra is isomorphic to
R.

Definition (Grassmannian algebras). Let (xij)i∈[1,k],j∈[1,n] be a family of kn indeterminates, thought of
as the entries of a k×n matrix. For a subset S ⊂ [1, n] of size k, we let ∆S ∈ C[x′ijs] denote the Plücker
coordinate, i.e. the k×k minor of this matrix whose columns are taken from S. We denote by C[Ĝr(k, n)]
the C-algebra generated by the ∆S as S ranges over all k-subsets of n.

The ring in Definition 2 is the coordinate ring of the affine cone Ĝr(k, n) over the Grassmann manifold
Gr(k, n) of k-dimensional subspaces in Cn, with respect to the Plücker embedding of Gr(k, n) in projec-
tive space. This ring has a cluster structure which was originally decribed by J. Scott [15]. The frozen
variables consist of Plücker coordinates ∆S whose columns are cyclically consecutive. Every Plücker
coordinate is a cluster variable, although there are typically infinitely many additional cluster variables.

3 Kuperberg’s webs
Definition. A tensor diagram is a finite bipartite graph T with a fixed bipartition into black and white
color sets, subject to the following additional conditions. The graph T is drawn in the disk and considered
up to isotopy. Certain vertices of T are distinguised as boundary vertices and these vertices reside on the
boundary of the disk. Every boundary vertex is black. The remaining vertices reside in the interior of
the disk, and all of these interior vertices are trivalent (the boundary vertices can have arbitrary valence,
including zero). A tensor diagram is called a web if it is planar.
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Fig. 1: A web for Gr(3, 9).

Every tensor diagram T with n boundary vertices defines an invariant [T ] ∈ C[Ĝr(3, n)] according to
the following prescription (cf. [4, Equation (4.1)] ):

[T ] =
∑

proper labelings `

(−1)`M(`) ∈ C[xij ]i∈[1,k],j∈[1,n] (2)

where

• the sum is over proper labelings ` of T ; that is labelings of the edges of T with the numbers 1, 2, 3
such that the labels are distinct around each interior vertex,

• the sign (−1)` ∈ {±1} is the product of local signs around each interior vertex; around an interior
vertex the edge labels either read 1, 2, 3 or 1, 3, 2 in clockwise order, and the local sign is + or −
accordingly,

• and M(`) denotes a certain monomial in the xij’s; an edge in T adjacent to boundary vertex i and
with edge label j contributes a factor of xij to M(`).

The polynomial [T ] is always SL3-invariant, and using this fact it follows by classical invariant theory
that [T ] ∈ C[Ĝr(3, n)] as claimed. We model the addition in C[Ĝr(3, n)] by adding tensor diagrams
formally, and we model the multiplication by superimposing diagrams.

Example 1. We can represent the Pl ucker coordinates ∆ijk ∈ C[Ĝr(3, n)] by a tripod T connecting the
boundary vertices i, j, k. The expression (2) describing the invariant [T ] associated to this tripod agrees
with the usual definition of the determinant as a sum over permutations.

A web is called non-elliptic if it has no 2-cyles at the boundary, and if every interior face is bounded
by at least 6 sides. We call an element x ∈ C[Ĝr(3, n)] a non-elliptic web invariant if x = [W ] for W a
non-elliptic web.

Theorem (Kuperberg [12]). The non-elliptic web invariants form a basis for C[Ĝr(3, n)].
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Furthermore, there is an algorithm for rewriting an arbitrary linear combination of tensor diagram in-
variants in terms of the basis of non-elliptic web invariants. This is done by repeatedly applying certain
skein relations between tensor diagram invariants. These skein relations are diagrammatic moves replac-
ing a tensor diagram T by another tensor diagram T ′ (or sometimes a sum of several tensor diagrams)
that defines the same invariant. The relations are local, meaning they replace a small fragment of a tensor
diagram with another fragment, without changing how T looks outside of the fragment. We illustrate
applying such a skein relation by example.

Example 2. Consider the Plücker coordinates ∆124,∆135 ∈ C[Ĝr(3, 5)]. We represent their product
∆124∆135 as a tensor diagram by superimposing two tripods. By applying a Kuperberg skein relation of
the form

= +

, (3)

we can express ∆124∆135 in the web basis as

= +

1

2
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(4)

The final combinatorial ingredient we will require is the arborization algorithm W 7→ Arb(W ) given
by Fomin and Pylyavskyy [4]. It transforms a web W by repeating the diagrammatic move in Figure 2,
as many times as this move is possible. Performing this move does not change the value of the invariant
defined by W , i.e. the resulting tensor diagram Arb(W ) satisfies [Arb(W )] = [W ].

A non-elliptic web invariant [W ] is arborizable if Arb(W ) has no internal cycles, and is indecompos-
able if Arb(W ) is not a union of several tensor diagrams.

T ′ T ′

arborization−−−−−−→

T ′ T ′

Fig. 2: An arborization step indicated schematically. One can apply this step whenever a given tensor diagram T has
two copies of the same binary tree T ′ ⊂ T connecting to the boundary, and these two copies of T ′ are joined by a
path of length 4. This is indicated schematically in the left portion of the figure. The dashed lines show how these
two copies of T ′ are connected to the rest of T . The arborization step removes the path of length 4 and connects the
two copies of T ′ to the rest of the diagram as indicated on the right hand side of the figure.
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Conjecture 1 (Fomin-Pylyavskyy [4, Sections 9 and 10]). The set of cluster (and frozen) variables in
C[Ĝr(3, n)] coincides with the set of indecomposable non-elliptic web invariants that are arborizable.
Two such cluster variables lie in the same cluster if and only if their product is again a non-elliptic web
invariant.

Example 3. The web W in Figure 1 is equal to its own arborization; there are no arborization steps to
apply. However, this web is not arborizable since it has an interior cycle. On the other hand, every Plücker
coordinate is an example of an indecomposable arborizable web.

The third web in (4) is not indecomposable. It arborizes as a product of two tripods, namely the ones
for ∆134 and ∆125. Thus, (4) expresses the familiar Plücker relation

∆124∆135 = ∆123∆145 + ∆134∆125 (5)

in terms tensor diagram calculus.

As we have said, when n ≤ 8, Conjecture 1 can be verified by hand since there are only finitely many
cluster variables in these cases. We can now state our first two main results. We say two non-elliptic webs
are compatible if their product is a non-elliptic invariant. This is the condition for two cluster variables to
be in the same cluster according Conjectures 1.

Theorem 1. The set of cluster variables in C[Ĝr(3, 9)] includes infinitely many indecomposable arboriz-
able web invariants. The set of clusters includes infinitely many clusters whose cluster variables are
pairwise compatible.

Computing cluster variables in C[Ĝr(3, 9)] by performing mutations is not practical at the moment
since there is no tensor diagram analogue for division. To compute the new cluster variable x′k in a cluster
variable exchange relation (1), it would seem one must first “guess” what x′k must be, superimpose the
tensor diagrams for xk and x′k, and then see if a sequence of skein relations produces the two monomials
on the right hand side of (1). Theorem 1 and its proof indicate a way to construct complicated cluster
variables without ever performing such mutation steps.

Theorem 2. The set of indecomposable web invariants in C[Ĝr(3, 9)] includes infinitely many non-
arborizable invariants.

Theorem 2 is relevant in light of the expected link between cluster algebras and canonical bases. A
cluster monomial in a cluster algebra is a monomial in the elements of any extended cluster in the corre-
sponding seed pattern. It is has long been suspected that cluster monomials should be a part of a naturally
defined basis for the cluster algebra. Defining this canonical basis using the cluster structure is a guiding
problem in the theory of cluster algebras. Recent breakthroughs by several groups [2, 10, 11] have re-
inforced the importance of this problem and suggested potential answers - for example it is now known
that the set of cluster monomials is linearly independent. The nonarborizable webs in Theorem 2 are not
cluster monomials. Consequently these webs should provide a distinguished role for understanding the
relation between the various canonical bases and the cluster structure.

4 A quasi-isomorphism with Fock-Goncharov space
To prove Theorems 1 and Theorem 2, we will construct a group of symmetries of the cluster structure on
C[Ĝr(3, 9)]. To find these symmetries, we will make use of a second family of cluster algebras that has
received considerable interest in its own right.
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Fock and Goncharov have described a cluster algebra for each choice of semisimple Lie groups G and
marked bordered surfaces S. We will be interested in the case where G = SL3 and S is a disk with r
marked points on its boundary. Let V be a three-dimensional vector space.

Definition (Affine flags in SL3). An affine flag for SL3 is a pair (v, v ∧ w) ∈ V × Λ2(V ) for some
v, w ∈ V such that v ∧ w 6= 0. A configuration of r affine flags is an r-tuple (F1, . . . , Fr) of affine flags
considered up to simultaneous action by SL3. The space of such configurations is denoted Confr(SL3).

The Fock-Goncharov cluster algebra occupying our interest is the ring C[Confr(SL3)] of polyno-
mial functions on configurations of r affine flags. by By appropriately modifying Definition 3, the ring
C[Confr(SL3)] has its own version of web combinatorics obtained. Rather than placing n black vertices
on the boundary as we did for Ĝr(3, n), the r boundary vertices in a web for C[Confr(SL3)] are thought
of as being simultaneously black and white. One can define invariants [W ] ∈ C[Confr(SL3)], skein rela-
tions, and an arborization algorithm for webs in this context. Fomin and Pylyavskyy give an appropriate
version of Conjecture 1 describing the cluster variables and clusters in C[Confr(SL3)].

We now indicate the promised bijection between cluster variables in C[Ĝr(3, 3r)] and C[Conf2r(SL3)].
We will indicate the bijection by example in the case r = 2 using Figure 3. For a tensor diagram in
C[Ĝr(3, 6)], we obtain a tensor diagram for C[Conf4(SL3)] by “plugging” T into the 6 black vertices pro-
duced in Figure 3. Similarly, we produce a tensor diagram for C[Ĝr(3, 6)] from a web for C[Conf4(SL3)]
by plugging into the 8 vertices (4 black and 4 white) in Figure 3. The F11 and F12 indicate the “black”
and “white” arguments of the affine flag F1 respectively. In both cases, if T plugs in to a given boundary
vertex more than once, the recipe requires plugging T into several copies of the corresponding fragment
in Figure 3.

1 2

3

45

6

F11

F21

F41

F31

F22

F12

F42

F32

1 2

34

V1 V3V2

V6 V4V5

Fig. 3: The diagram on the left indicates schematically how to produce a tensor diagram for Conf4(SL3) from a
tensor diagram for Gr(3, 6). This is done by plugging in the vectors V1, . . . , V6 to the black strands in the figure.
The right figure indicates how to produce a tensor diagram for Gr(3, 6) from a tensor diagram for Conf4(SL3). The
arguments F11 and F12 indicate the black and white parts of the first affine flag and so on.

Example 4. Plugging in the Plücker coordinate ∆135 to the left diagram in Figure 3 produces a “quadra-
pod web” for Conf4(SL3). It is obtained by joining the boundary vertices 1 and 2 for Conf4(SL3) by a
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white fork, joining the boundary vertices 3 and 4 by a black fork, and then connecting these two forks to
each other.

The rules in Figure 3 induce maps of algebras

Ψ∗ : C[Conf2r(SL3)]→ C[Ĝr(3, 3r)] (6)

Φ∗ : C[Ĝr(3, 3r)]→ C[Conf2r(SL3)]. (7)

We have the following pair of parallel propositions, which we view as evidence for Conjecture 1.

Proposition 3. If x ∈ C[Ĝr(3, 3r)] is a cluster variable then Φ∗(x) factors as Mx′ where M is a mono-
mial in the frozen variables for C[Conf2r(SL3)] and x′ is a cluster variable. Ditto for Ψ∗ with the roles
swapped. The map x 7→ x′ induces a bijection of the cluster variables and clusters in these two cluster
algebras.

Proposition 4. Let W be a non-elliptic web for Gr(3, 3r). Its image Φ∗([W ]) ∈ C[Conf2r(SL3)] factors
as M [W ′] where M is a monomial in the frozen variables for C[Conf2r(SL3)] and W ′ is an indecompos-
able non-elliptic web. Furthermore, W ′ is arborizable if and only if W is. The same statement holds for
Ψ∗ with the roles of Gr and Conf swapped.

Proposition 3 is established algebraically. It follows from the statement that the algebra maps Φ∗ and Ψ∗

describe a quasi-isomorphism between this pair of cluster algebras. The concept of a quasi-isomorphism
(and related notions of quasi-homomorphisms and quasi-automorphisms) are studied systematically in [8].
Proposition 4 is proved combinatorially by analyzing the arborization steps that take place when evaluat-
ing the algebra homomorphisms Φ∗ and Ψ∗. One also must check that the tensor diagram W ′ obtained
by factoring out frozen variables is indeed a web invariant (i.e., that it can be given by a planar diagram).
In fact, the map W 7→W ′ can be described explicitly in terms of web combinatorics.

Now we leverage the maps Φ∗ and Ψ∗ to create otherwise hidden symmetries of the Grassmannian.

Definition (Cyclic shifts and duality). Let P denote the map on C[Confr(SL3)] induced by cyclic rotation
of affine flags

(F1, . . . , Fr)
P7→ (F2, . . . , Fr, F1). (8)

Thus P acts on webs for Confr(SL3) by rotating the r boundary vertices clockwise. Let D denote the
map on webs for C[Confr(SL3)] that globally swaps the black and white colors. Finally, let ρ denote the
cyclic shift on C[Gr(3, n)] induced by rotating the n boundary vertices.

The cluster structure on C[Confr(SL3)] is equivariant with respect to the symmetries P and D. How-
ever, intertwining with the maps Φ∗ and Ψ∗, P and D produces new symmetries of the cluster structure
on C[Ĝr(3, 3r)]. By Proposition 3, these maps induce permutations of the cluster variables for Gr(3, 3r).
We denote these permutations by Ṗ and Ḋ, and we let ρ̇ denote the permutation corresponding to ρ. By
Proposition 4, we can think of these elements acting on all indecomposable webs (not only on cluster
variables).
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Theorem 5. Suppose r ≥ 3 and k = 3. The elements Ṗ , Ḋ, and ρ̇ satisfy the relations

Ḋ2 = ρ̇rk = 1 (9)

ρ̇k = Ṗ 2 (10)

Ṗ Ḋ = ḊṖ (11)

ρ̇Ṗ Ḋ = Ṗ Ḋρ̇, (12)

and these relations give a presentation for the group these elements generate.

The group presented by the relations in in Theorem 5 has exponential growth. The proof of Theorems
1, 2, and 5 goes by analyzing the action of the elements Ṗ , Ḋ, and ρ̇ on particular webs, using the
explicit description of the maps Φ∗ and Ψ∗. A variant of the Ping Pong Lemma coupled with this explicit
description can be used to show that the relations in Theorem 9 give a presentation.

To prove Theorem 2 we consider the orbit of the nonarborizable web in Figure 1 (see also Example 3)
with respect to the group in Theorem 5. One can show that orbit is infinite using a Ping Pong Lemma
argument. Acting on a Plücker coordinate (or on a cluster consisting entirely of Plücker coordinates) and
checking the orbit is infinite, one obtains Theorem 1.

5 Webs in higher rank
There is a generalization of Definition 3 that comes from replacing SL3 by SLk with k arbitrary . The
underlying combinatorial object is as follows:

Definition. A web for SLk is a finite bipartite graph drawn in the disk with n boundary black vertices,
with edges labeled by positive integers in [1, k − 1], subject to two additional requirements. First, every
interior vertex is either bivalent or trivalent, and the sum of the edge labels around each interior vertex is
k. Second, every edge that connects to the boundary is labeled with a 1.

In a similar fashion to (2), one can try to define an invariant [W ] ∈ C[Ĝr(k, n)] corresponding to a web
W . Unfortunately, there is no natural choice of the local signs around an interior vertex, and the invariant
[W ] is only well-defined up to a choice of ± sign. There are ways of fixing this ambiguity using directed
edges and tags [1], but we will suppress this technicality to streamline our discussion.

When G = SLk, the Fock-Goncharov cluster algebra is a ring C[Confr(SLk)] of polynomial functions
on configurations of r affine flags in SLk. To define webs for this cluster algebra, one simply drops the
requirement that all boundary edges have weight 1 in Definition 5.

Cautis, Kamnizer, and Morrison have described a complete set of local diagrammmatic relations amongst
SLk web invariants [1]. However the combinatorics is more complicated when k > 3. One reflection of
this is that there is not yet a simple notion for what it should mean for an SLk-web to be non-elliptic, i.e.
there is no natural basis for C[Ĝr(k, n)] consisting of web invariants when k ≥ 4. There is no arborization
algorithm (or even a proposal for one), and no version of Conjecture 1. On the other hand, there is hope
that one can use SLk webs to study the cluster combinatorics for the cluster algebras C[Ĝr(k, n)] and
C[Confr(SLk)] associated with G = SLk. We are able to make some progress towards this hope.

Theorem 6. The maps Φ∗ and Ψ∗ bear appropriate generalizations to algebra maps Ψ∗ : C[Conf2r(SLk)]→
C[Ĝr(k, rk)] and Φ∗ : C[Ĝr(k, rk)] → C[Conf2r(SLk)]. These maps provide a quasi-isomorphism of the
corresponding cluster algebras. If [W ] ∈ C[Conf2r(SLk)] is a web invariant, then so is Ψ∗([W ]) ∈
C[Ĝr(k, rk)], and ditto for Φ∗.
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For arbitary k, one can make sense of the cyclic shift and duality maps ρ, P and D. One obtains certain
symmetries of the cluster combinatorics for C[Ĝr(k, rk)]. The relations in Theorem 5 still hold and we
conjecture that they still give a presentation. Acting by these symmetries on Plücker coordinates, we get
a large class of cluster variables for C[Ĝr(k, rk)] all of which are web invariants by Theorem 6.

Finally, we would like to highlight a connection between our and previous work. Marsh and Scott have
given a version of a twist map for the cluster structure on C[Ĝr(k, n)], cf. [13] and [14]. This twist map
can be recovered from our group of symmetries (in the case k divides n):

Theorem 7. Let F be the algebra endomorphism of C[Ĝr(k, rk)] defined by intertwining P−1 ◦D with
the quasi-isomorphisms Φ∗ and Ψ∗ from Equation 6. Then F agrees with the twist map of Marsh and
Scott.

6 Further remarks
There are several directions which remain to be explored. In particular, we make the following conjecture.

Conjecture 2. The set of nonarborizable indecomposable webs for C[Ĝr(3, 9)] is precisely the orbit of
the web in Figure 1 under the action of the group in Theorem 5.

Fock and Goncharov have defined the cluster modular group; it is an abstractly defined group of sym-
metries of a cluster algebra that is difficult to compute in practice. The group in Theorem 5 is a subgroup
of the cluster modular group for C[Ĝr(3, 9)]. We speculate that these two groups might coincide.
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