
FPSAC 2016 Vancouver, Canada DMTCS proc. BC, 2016, 791–802

Scheduling Problems and Generalized Graph
Coloring

John Machacek
Department of Mathematics, Michigan State University, USA

Abstract. We define a new type of vertex coloring which generalizes vertex coloring in graphs, hypergraphs, and
simplicial complexes. To this coloring there is an associated symmetric function in noncommuting variables for which
we give a deletion-contraction formula. In the case of graphs our symmetric function in noncommuting variables
agrees with the chromatic symmetric function in noncommuting variables of Gebhard and Sagan. Our vertex coloring
is a special case of the scheduling problems defined by Breuer and Klivans. We show how the deletion-contraction
law can be applied to scheduling problems.

Résumé. Nous définissons un nouveau type de coloration des sommets qui généralise les colorations dans les graphes,
hypergraphes et complexes simpliciaux. Pour cette coloration, nous associons une fonction symétrique en variables
non commutatives, pour laquelle nous donnons une formule de délétion - contraction. Dans le cas des graphes, notre
fonction symétrique en variables non commutatives est en accord avec celle de Gebhard et Sagan. Notre coloration
des sommets est un cas particulier des problémes d’ordonnancement définis par Breuer et Klivans; nous démontrons
comment la loi de délétion - contraction peut être appliquée á ces problémes.
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1 Introduction
In this paper we define a generalization of vertex coloring which has graph coloring and hypergraph col-
oring as a special case. Associated to our generalization vertex coloring we have a symmetric function
in noncommuting variables which generalizes the chromatic symmetric function in noncommuting vari-
ables defined by Gebhard and Sagan in [GS01]. The vertex coloring we study corresponds to a special
class of the scheduling problems defined by Breuer and Klivans in [BK14], and our symmetric function
in noncommuting variables is an instance of the scheduling quasisymmetric function in noncommuting
variables from [BK14].

1.1 NCSym and NCQSym
We let P = {1, 2, . . . } denote the positive integers and for any n ∈ P we let [n] = {1, 2, . . . , n}. A
partition of [n] is π = B1/B2/ · · · /Bl where

⊎l
i=1Bi = [n]. When writing partitions we often suppress

notation by simply writing 12/3 in place of {1, 2}/{3}. Here we call each Bi a block of the partition
π and the order of the blocks is irrelevant. For example 12/3 and 3/12 denote the same partition of [3].
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Take noncommuting variables {y1, y2, . . . } and a partition π of [n] for some n ∈ P, then the monomial
nc-symmetric function mπ is defined by

mπ :=
∑

i1,i2,...,in

yi1yi2 · · · yin

where the sum is over all sequences (i1, i2, . . . , in) ∈ Pn satisfying the condition that ij = ik if and only
if j and k are in the same block of the partition π. Also, the powersum nc-symmetric function pπ is defined
by

pπ :=
∑
σ≥π

mσ

where σ ≥ π is taken in the lattice of partitions of [n] partially ordered by refinement. We denote the
lattice of partitions of [n] by Πn. We now define NCSym the algebra of nc-symmetric functions to be the
K-space generated by either the basis of monomial nc-symmetric functions {mπ : π ∈ Πn, n ∈ P} or
the basis of powersum nc-symmetric functions {pπ : π ∈ Πn, n ∈ P}. Here K can be any field. As an
example we have

m12/3 = y1y1y2 + y2y2y1 + y1y1y3 + y3y3y1 + · · ·
p12/3 = m12/3 +m123

as elements of NCSym.
A composition of [n] is Φ = (B1, B2, . . . , Bl) where

⊎l
i=1Bi = [n]. When writing composition

we often suppress notation in the same manner as for partition by simply writing (12, 3) in place of
({1, 2}, {3}). We again call each Bi a block of the composition Φ. The only difference between in
partition of [n] and a composition of [n] is in the latter the ordering of the blocks is relevant. For example
(12, 3) and (3, 12) denote different compositions of [3]. Taking a composition Φ = (B1, B2, . . . , Bl) of
[n] for some n ∈ P the monomial nc-quasisymmetric function is defined by

MΦ :=
∑

i1,i2,...,in

yi1yi2 · · · yin

where the sum is over all sequences (i1, i2, . . . , in) ∈ Pn satisfying the condition that for j, k ∈ [n] where
j ∈ Bp and k ∈ Bq with p ≤ q we have that

• ij ≤ ik

• ij = ik if and only if p = q.

We let ∆n denote the collection of all compositions of [n] and define NCQSym the algebra of nc-
quasisymmetric functions to be the K-space generated by the basis of monomial nc-quasisymmetric func-
tions {MΦ : Φ ∈ ∆n, n ∈ P}. As an example we have

M(12,3) = y1y1y2 + y1y1y3 + y2y2y3 + · · ·
M(3,12) = y2y2y1 + y3y3y1 + y3y3y2 + · · ·
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as elements of NCQSym. We note that NCSym is contained in NCQSym as a proper subset. Given
π ∈ Πn we have

mπ =
∑
Φ

MΦ

where the sum is over all compositions Φ of [n] which have the same blocks as π. One can check
m12/3 = M(12,3) +M(3,12) using the previous examples in this section.

Given a monomial yi1yi2 · · · yin and a sequence (r0, r1, . . . , rk) ∈ Pk+1 with k < n we define induc-
tion on the monomial with respect to the sequence by

yi1yi2 · · · yin ↑(r0,r1,...,rk):= yi1yi2 · · · y
1+rk
in−k

· · · y1+r1
in−1

y1+r0
in

.

Extending this operation linearly we get induction of any element of NCQSym, and hence any element
of NCSym as well. Note this generalizes induction as defined in [GS01] where what we denote by ↑(1) is
used. We can define induction on compositions in a way compatible with induction on NCQSym. Given
a composition Φ ∈ ∆n , r ∈ P, and t ∈ N define Φ ↑s,t to be the composition of [n+ s] obtained from Φ
by first replacing n−j with n−j+s for 0 ≤ j < t and then placing n−t+1, n−t+2, . . . , n−t+s in the
same block as n−t. For (r0, r1, . . . , rk) ∈ Pk+1 with k < nwe define Φ ↑(r0,r1,...,rk):= Φ ↑(r0,r1,...,rk),0

where we have the recursion Φ ↑(r0,r1,...,rj),t= (Φ ↑r0,t) ↑(r1,r2,...,rj),t+r0+1 with Φ ↑(),t= Φ.

Lemma 1. If Φ ∈ ∆n and (r0, r1, . . . , rk) ∈ Pk+1 with k < n, then MΦ ↑(r0,r1,...,rk)= MΦ↑(r0,r1,...,rk) .

The lemma follows from the definition of the induction operation. Induction can be applied to partitions
in the same way as compositions but without regrading the ordering of the blocks. Lemma 1 then implies
that

mπ ↑(r0,r1,...,rk) = mπ↑(r0,r1,...,rk) pπ ↑(r0,r1,...,rk) = pπ↑(r0,r1,...,rk)

whenever π ∈ Πn and k < n. We now demonstrate the induction operation with an example.

Example 2. We take (1, 2) ∈ ∆2 and (2, 1) ∈ P2. First let us consider induction on the composition
(1, 2).

(1, 2) ↑(2,1) = (1, 2) ↑(2,1),0

= (1, 234) ↑(1),3

= (12, 345)

Next we consider induction on the nc-monomial quasisymmetric function and see that is in compatible
with induction on the composition.

M(1,2) = y1y2 + y1y3 + y2y3 + · · ·
M(1,2) ↑(2,1) = y2

1y
3
2 + y2

1y
3
3 + y2

2y
3
3 + · · ·

M(1,2)↑(2,1) = M(12,345) = y2
1y

3
2 + y2

1y
3
3 + y2

2y
3
3 + · · ·
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1.2 Scheduling Problems
As defined in [BK14] a scheduling problem on n elements is a boolean formula S over the atomic formulas
xi ≤ xj for i, j ∈ [n]. We are interested in solutions to a scheduling problem where each xi takes a value
in P. A function f : [n] → P is a solution to the scheduling problem S if when xi = f(i) the boolean
formula S is true. We then get the scheduling nc-quasisymmetric function SS defined by

SS :=
∑
f

n∏
i=1

yf(i)

where the sum is taken over all solutions f to the scheduling problem S. Given Φ = (B1, B2, . . . , Bl) a
composition of [n] we can view Φ as a map Φ : [n]→ [l] by f(i) = j if i ∈ Bj . We say a set composition
Φ solves S its corresponding map does. In this way we see that SS is indeed an element of NCQSym and
can be expressed in the monomial basis as

SS =
∑
Φ

MΦ

where the sum in over set compositions Φ of [n] which solve S.

1.3 Coloring in Graphs, Hypergraphs, and Simplicial Complexes
For us a graph is will mean a finite undirected graph with loops and multiple edges allowed. We will write
a graph G as a pair G = (V,E) where where V is a finite set and E is finite multiset of unordered pairs of
(not necessarily distinct) elements of V . We call elements of V vertices and elements of E edges. When
|V | = n we will usually assume without stating that V = [n]. From identifying V with [n] we obtain
an ordering of the vertices. Given vertices u, v ∈ V , the edge between u and v is written uv ∈ E where
uv = vu. A map f : V → P is called a proper coloring of G if it produces no monochromatic edge. That
is f is a proper coloring if for all uv ∈ E we have that f(u) 6= f(v).

A hypergraph H is a pair H = (V,E) where E a collection of subsets of V . We call the elements of
V vertices and elements of of E hyperedges. If for each e ∈ E we have that |e| = s, then we call H an
s-uniform hypergraph. A map f : V → P is a proper coloring of H if it produces no monochromatic
hyperedge.

An abstract simplicial complex Γ on a vertex set V is a collection of subsets of V such that for all
v ∈ V we have {v} ∈ Γ and if A ∈ Γ then B ∈ Γ for any B ⊆ A. Elements of Γ are called faces
and faces which are maximal with respect to inclusion are called facets. We call A ∈ Γ an s-simplex if
|A| = s+ 1. Given a positive integer s a map f : V → P is an s-simplicial coloring of Γ if it produces no
monochromatic s-simplex. Coloring in graphs and hypergraphs is classical, but this notion of coloring in
simplicial complexes is more recent and defined in [DMN10]. We will show in Section 4 that coloring in
simplicial complexes can be thought of as coloring in uniform hypergraphs and conversely.

2 Coloring and Generalized Graphs
We define a generalized graph G to be a pair G = (V, E) where V is a finite set and E is a multiset of
nonempty graphs with vertex set V . This means elements of E are of the form (V,E) with E 6= ∅. An
element (V,E) ∈ E is called a generalized edge, and (V,E) ∈ E is a generalized loop if E consists of
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only loops. If G = (V, E) is a generalized graph, then a coloring of G is a map f : V → P. The coloring
f : V → P is a proper coloring of G if for each (V,E) ∈ E there exists an edge e ∈ E which is not
monochromatic. Observe that no proper color of G exists if G contains a generalized loop.

Example 3. Given a graph G = (V,E) we get a generalized graph GG := (V, EG) where EG =
{(V, {e}) : e ∈ E}. Here proper colorings of GG exactly correspond to proper colorings of G. For a
hypergraph H = (V,E) we get the generalized graph GH := (V, EH) where EH = {(V,Ee) : e ∈ E}
where Ee = {uv : u, v ∈ e}. Again here with have that the proper colorings of GH are in correspondence
with proper colorings of H .

We will see in Lemma 16 that s-simplicial coloring is equivalent to proper coloring (s + 1)-uniform
hypergraphs. Therefore considering Example 3 coloring in generalized graphs encompasses coloring in
graphs, hypergraphs, and simplicial complexes.

For a generalized graph G we define the chromatic nc-symmetric function of G by

YG :=
∑
f

n∏
i=1

yf(i)

where the sum is over all proper colorings f of G. It is readily verified that YG is in fact an element of
NCSym. By allowing the variables to commute we obtain the symmetric function XG which we call the
chromatic symmetric function of G. We also obtain the chromatic polynomial of G, which we denote χG ,
by letting χG(k) by the specialization of YG with yi = 1 for 1 ≤ i ≤ k and yi = 0 for i > k. Here χG(k)
counts the number of proper coloring of G using only colors from [k].

For a generalized graph G = (V, E) and (V,E) ∈ E deletion of the generalized edge (V,E) is denoted
G \ (V,E) and defined by

G \ (V,E) := (V, E ′)

where E ′ = E \ (V,E). For any graphs (V,E1) and (V,E2) on the same vertex set we define

(V,E1)/(V,E2) := (V/(V,E2), E1/(V,E2))

where V/(V,E2) and E1/(V,E2) are obtained by identifying the vertices u and v whenever uv ∈ E2.
For a generalized graph G = (V, E) and (V,E) ∈ E contraction by the generalized edge (V,E) is denoted
by G/(V,E) and defined by

G/(V,E) = (V/(V,E), E ′′)

where E ′′ = {G/(V,E) : G ∈ E ′} and again E ′ = E \ (V,E). Observe that these definitions agree with
the usual notion of deletion and contraction in a graph G if we consider the generalized graph GG from
Example 3. Also, note that for a generalized loop deletion and contraction are equivalent. Lastly, notice
that both deletion and contraction always decrease the number of generalized edges by exactly 1.

Let G = (V, E) be a generalized graph and let (V,E) ∈ E be a fixed generalized edge. We call
the generalized edge (V,E) contraction ready if the blocks of the partition of V given by connected
components of the graph (V,E) can be ordered to obtain the composition Φ = (B1, B2, . . . , Bl) of V
such that Bi1 > Bi2 for any i1 < i2 and there is some k ≥ 0 such that Bi a singleton if and only if
i > k. In this case we call Φ a contraction ready composition. Here for disjoint subsets A,B ⊆ V we say
A < B if a < b for all a ∈ A and b ∈ B. Notice that any generalized edge can be made contraction ready
by some relabeling of the vertices. Here if |V | = n we identify V with [n], and relabeling the vertices
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amounts to acting by some permutation δ ∈ Sn. The permutation δ also acts on a monomial of degree n
by

δ(yi1yi2 · · · yin) = yiδ−1(1)
yiδ−1(2)

· · · yiδ−1(n)

and can be extended linearly to act on YG . In this case we have δ(YG) = Yδ(G). For the corresponding
relabeling result for graphs see [GS01, Proposition 3.3]. Thus we can assume that any generalized graph G
has a contraction ready generalized edge since we can always obtain such a generalized edge by relabeling.

If (V,E) is a contraction ready generalized edge then the contraction operation is compatible with our
ordering of vertices. When the contraction ready composition Φ = (B1, B2, . . . , Bl) the l blocks the
contraction G/(V,E) will have vertex set [l] where the vertices in Bi all get identified to a single vertex
denoted by l − i+ 1. To demonstrate this consider the following example.

Example 4. Consider the generalized graph G = ([4], {([4], {13, 24}), ([4], {12, 34})}) and let G =
([4], {12, 34}). Then G \ G = ([4], {([4], {13, 24})}) and G/G = ([2], {([2], {12, 12})}). Here the
contraction ready composition is (34, 12). The vertices 3 and 4 are identified and denote by 2 while the
vertices 1 and 2 are identified and denoted by 1 in G/G. An example of a proper coloring of G is given by
f : [4]→ P by f(1) = f(2) = f(3) = 1 and f(4) = 2.

We are now ready to state and prove the deletion-contraction formula for the chromatic nc-symmetric
function of a generalized graph.

Theorem 5. If G = (V, E) and (V,E) ∈ E is a contraction ready generalized edge, then

YG = YG\(V,E) − YG/(V,E) ↑(r1,r2,...,rk)

where Φ = (B1, B2, . . . , Bl) is the contraction ready composition of V given by connected components
of (V,E) and ri = |Bi| − 1.

Proof. Given f : V → P observe that f being monochromatic on all edges e ∈ E is equivalent to being
f monochromatic on each connected component of (V,E). Now we have

YG\(V,E) =
∑
f

n∏
i=1

yf(i)

where the sum is over proper colorings of G \ (V,E). Any proper coloring of G \ (V,E) is of one of the
following two types.

• A proper coloring of G.

• A proper coloring of G \ (V,E) which is monochromatic on each connected component of (V,E).

Then by the definition on contraction, induction, and the fact the (V,E) was contraction ready we have
that

YG/(V,E) ↑(r1,r2,...,rk)=
∑
f

n∏
i=1

yf(i)

where the sum is over f : V → P such that f is a proper coloring of G \ (V,E) which f is monochromatic
on each component of (V,E). The theorem readily follows.
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Our deletion-contraction law in Theorem 5 generalizes the deletion-contraction law in [GS01], and in
a similar way we can use our deletion-contract law to give a powersum expansion of the chromatic nc-
symmetric function YG . Given a generalized graph G = (V, E) and A ⊆ E with A = {(V,Ei) : 1 ≤ i ≤
k} we define π(A) to be the partition of V into the connected components of the graph (V,

⋃k
i=1Ei).

Theorem 6. If G = (V, E) is a generalized graph, then

YG =
∑
A⊆E

(−1)|A|pπ(A).

Proof. We induct on |E|. If |E| = 0, then YG = p1/2/···/n = pπ(∅) and the theorem holds. Now assume
|E| > 0 and let (V,E) ∈ E be a contraction ready generalized edge. As before we let E ′ and E ′′ denote
the multiset of generalized edges in the deletion and contraction respectively. Then using Theorem 5 we
have

YG = YG\(V,E) − YG/(V,E) ↑(r1,r2,...,rk)

=
∑
A⊆E′

(−1)|A|pπ(A) −
∑
Ā⊆E′′

(−1)|Ā|pπ(Ā) ↑(r1,r2,...,rk)

=
∑

A⊆E:(V,E) 6∈A

(−1)|A|pπ(A) +
∑

A⊆E:(V,E)∈A

(−1)|A|pπ(A)

=
∑
A⊆E

(−1)|A|pπ(A).

We note that
−
∑
Ā⊆E′′

(−1)|Ā|pπ(Ā) ↑(r1,r2,...,rk)=
∑

B⊆E:(V,E)∈B

(−1)|B|pπ(B)

since for Ā ⊆ E ′′ we have π(Ā) ↑(r1,r2,...,rk)= π(B) where B = A ∪ (V,E) if A ∈ E ′ corresponds to
Ā ∈ E ′′. Recall E ′′ = E ′/(V,E) and hence we have a canonical bijection between E ′ and E ′′.

Allowing the variables to commute we obtain powersum expansion of the chromatic symmetric function
XG of generalized graph G from Theorem 6. When considering graphs and hypergraphs as generalized
graphs as in Example 3 we recover the powersum expansion for graphs [Sta95] and hypergraphs [Sta98].
Also, Lemma 16 will allow Theorem 6 to be applied in the setting of simplicial complexes we get a
powersum expansion for the s-chromatic symmetric function from [BHM15]. We now conclude this
section with an example of using both Theorem 5 and Theorem 6 to compute a chromatic nc-symmetric
function.

Example 7. Again consider the generalized graph G = ([4], {([4], {13, 24}), ([4], {12, 34})}) and let
G = ([4], {12, 34}). Recall that G \ G = ([4], {([4], {13, 24})}) and G/G = ([2], {([2], {12, 12})}).
Note f : [4]→ P is a proper coloring of G except in the following cases:

• f(1) = f(2) and f(3) = f(4)

• f(1) = f(3) and f(2) = f(4).



798 John Machacek

It follows that
YG =

∑
π 6=1234
π 6=12/34
π 6=13/24

mπ.

Similarly by considering proper colorings of G \G and G/G we can conclude

YG\G =
∑

π 6=1234
π 6=12/34

mπ YG/G = m1/2 YG/G ↑(1,1)= m12/34.

We can now directly verify Theorem 5 in this case which states YG = YG\G − YG/G ↑(1,1). We can
alternatively use Theorem 6 to compute and obtain

YG = p1/2/3/4 − p12/34 − p13/24 + p1234.

It is readily verified that the expansions of YG in the monomial basis and powersum basis describe the
same element of NCSym.

3 Graph-like Scheduling Problems
Though the definition of scheduling problems only includes atomic formulas with weak inequalities we
can build strict inequality, equality, and nonequality as follows

(xi < xj) = ¬(xj ≤ xi) (xi = xj) = (xi ≤ xj) ∧ (xj ≤ xi) (xi 6= xj) = ¬(xi = xj).

A boolean formula C is called edge-like if it can be expressed as a disjunction of nonequalities. That is C
is edge-like if

C =
∨

(i,j)∈I

xi 6= xj

for some I ⊆ [n] × [n]. A boolean formula S is called graph-like if it can be expressed as a conjunction
of edge-like boolean formulas. That is S is graph-like if

S =
∧
α∈I

Cα

for some index set I where Cα is edge-like for each α ∈ I .

Example 8. For a generalized graph G = (V, E) define the scheduling problem SG by

SG :=
∧

(V,E)∈E

∨
uv∈E

xu 6= xv.

Here SG is the scheduling problem of properly coloring G where xv represents the color given to v ∈ V .

Our next result shows that any graph-like scheduling problem is equivalent to properly coloring some
generalized graph, and hence for any graph-like scheduling problem the scheduling nc-quasisymmetric
function is the chromatic nc-symmetric function for some generalized graph. In particular SS lies in
NCSym whenever S is graph-like. The fact SS is nc-symmetric when S is graph-like is not surprising
and also follows from the fact that xi 6= xj is symmetric in i and j.
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Theorem 9. A scheduling problem S is graph-like if and only if S = SG for some generalized graph G.

Proof. Let S be a graph-like scheduling problem where S = C1 ∧C2 ∧ · · · ∧Cm with each Ci edge-like,
and

Ci =
∨

(j,k)∈Ii

xj 6= xk

for some Ii ⊆ [n]× [n]. We define the generalized graph G = ([n], E) where E = {E1, E2, . . . , Em} and
Ei = {jk : (j, k) ∈ Ii}. We then have S = SG . The reverse direction is shown in Example 8

Theorem 9 has the following immediate corollary.

Corollary 10. If S is a graph-like scheduling problem, then SS = YG for some generalized graph G.

Let S be any scheduling problem and let V (S) be the set of i such that xi appears in S. If C is edge-
like, then C =

∨
(i,j)∈I xi 6= xj for some I ⊆ [n] × [n]. Thus ¬C =

∧
(i,j)∈I xi = xj and we say

that i ∼C j if xi = xj appears in ¬C. We get an equivalence relation on V (C) by taking the reflexive
transitive closure of∼C . We will write V (C) = O1]O2]· · ·]Ok to denote the decomposition of V (C)
into ∼C equivalence classes.

We define a contraction operation on scheduling problems. Let S be a boolean formula over the
atomic formulas xi ≤ xj for i, j ∈ [n]. Given a positive integers r and t with r + t < n we de-
fine S ↓r,t to be the boolean formula over atomic formulas xi ≤ xj for i, j ∈ [n − r] obtained
from S where xn−t, xn−t−1, . . . , xn−t−r are all identified to xn−r−t and then variable indices are stan-
dardized to lie in [n − r]. For (r1, r2, . . . , rk) a sequence of positive integers with r =

∑k
i=1 ri and

r + k < n. We define S ↓(r1,r2,...,rk):= S ↓(r1,r2,...,rk),0 where we have the recursion S ↓(r1,r2,...,rj),t=
(S ↓r1,t) ↓(r2,r3,...,rj),t+1 with S ↓(),t= S. We now give an example of contraction of a scheduling
problem.

Example 11.

((x1 ≤ x2) ∨ (x1 < x3) ∨ (x2 6= x4) ∨ (x4 ≤ x5)) ↓(2,1)

= ((x1 ≤ x2) ∨ (x1 < x3) ∨ (x2 6= x4) ∨ (x4 ≤ x5)) ↓(2,1),0

= ((x1 ≤ x2) ∨ (x1 < x3) ∨ (x2 6= x3) ∨ (x3 ≤ x3)) ↓(1),1

= ((x1 ≤ x1) ∨ (x1 < x2) ∨ (x1 6= x2) ∨ (x2 ≤ x2))

Lemma 12. If S = S′ ∧ C is scheduling problem, then SS = SS′ − SS′∧¬C .

Proof. We need to just consider which set compositions which solve S. We observe that SS and SS′ −
SS′∧¬C are both sums of monomials MΦ such that Φ solves S.

Recall for two disjoint subsets A,B ⊆ [n] we say A < B if a < b for all a ∈ A and b ∈ B. Given a
scheduling problem S on n elements with S = S′ ∧ C we call C a contractible clause if:

• C is edge-like,

• V (C) = {xn−s, xn−s+1, . . . , xn} for some 0 < s ≤ n,

• Oi > Oj for i < j where V (C) = O1 ]O2 ] · · · ]Ok and the Oi are the ∼C equivalence classes.
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Note that any edge-like clause C can be made into a contractible clause by relabeling the variables xi if
needed. The relabeling works similarly to the relabeling for generalized graphs in the previous section.

Lemma 13. If S = S′ ∧ C is a scheduling problem and C is a contractible clause, then

SS′∧¬C =
(
SS′↓(r1,r2,...,rk)

)
↑(r1,r2,...,rk)

where V (C) = O1 ]O2 ] · · · ]Ok is the decomposition into∼C equivalence classes and ri = |Oi| − 1.

Proof. First note that SS′∧¬C is the sum over monomials MΦ such that Φ solves S′ and ¬C. That is Φ
solves S′ and i and j are in the same block whenever xi ∼C xj .

Given any Φ solving S′ ↓(r1,r2,...,rk) we need to verify that Φ ↑(r1,r2,...,rk) solves S′ and that i and j
are in the same block whenever xi ∼C xj . Both these conditions are satisfied by definition of contraction
and induction along with the fact that C is a contractible clause.

We now give a deletion-contraction law that applies to any scheduling problem S that can be expressed
at S = S′ ∧ C where C is edge-like. The deletion-contraction law follows immediately from Lemma 12
and Lemma 13.

Theorem 14. If S = S′ ∧ C if a scheduling problem and C is a contractible clause, then

SS = SS′ −
(
SS′↓(r1,r2,...,rk)

)
↑(r1,r2,...,rk)

where V (C) = O1 ]O2 ] · · · ]Ok is the decomposition into∼C equivalence classes and ri = |Oi| − 1.

If S = C1 ∧ C2 ∧ · · · ∧ Cm is graph-like with each Ci edge-like, then we can apply Theorem 14 with
S′ = C1 ∧ C2 ∧ · · · ∧ Cm−1 and C = Cm. In this case both S′ and S′ ↓(r1,r2,...,rk) are graph-like and
so Theorem 14 can be iterated (after perhaps relabeling). If S is a graph-like scheduling problem, then by
Theorem 9 we have that S = SG for a generalized graph G. In that case the deletion-contraction for SS
in Theorem 14 is the same as the deletion-contraction for YG in Theorem 5. We now given an example of
using Theorem 14 to compute a scheduling nc-quasisymmetric function.

Example 15. We let S = S′ ∧ C where

S′ = (x1 ≤ x2) ∧ (x2 ≤ x3) ∧ (x3 ≤ x4) C = (x1 6= x2) ∨ (x3 6= x4).

We then let
S′′ = S′ ↓(1,1)= (x1 ≤ x1) ∧ (x1 ≤ x2) ∧ (x2 ≤ x2) = (x1 ≤ x2).

Computing the scheduling nc-quasisymmetric functions we see

SS′ = M(1234) +M(1,234) +M(12,34) +M(123,4) +M(1,2,34) +M(1,23,4) +M(12,3,4) +M(1,2,3,4)

SS′′ = M(12) +M(1,2)

SS′′ ↑(1,1) = M(1234) +M(12,34).

We then can apply Theorem 14

SS = SS′ − SS′′ ↑(1,1)

= M(1,234) +M(123,4) +M(1,2,34) +M(1,23,4) +M(12,3,4) +M(1,2,3,4).
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4 Coloring Uniform Hypergraphs and Simplicial Complexes
In this section we first show that coloring in a simplicial complex can be thought of as coloring in a
uniform hypergraph. Given a simplicial complex Γ and a nonnegative integer s we get an (s+ 1)-uniform
hypergraph H(s)(Γ) = (V (Γ), E(s)(Γ)) with edge set defined by

E(s)(Γ) := {A ∈ Γ : |A| = s+ 1}.

Lemma 16. A map f is an s-simplicial coloring of a simplicial complex Γ if and only if f is a proper
coloring of H(s)(Γ).

Since we have seen in Example 3 that hypergraph coloring is a special case of coloring in generalized
graphs, Lemma 16 shows that coloring is simplicial complexes is also a special case of generalized graph
coloring. Thus the theory of the chromatic nc-symmetric function applies to simplicial complexes. Given
a simplicial complex Γ and positive integer s the function YG

H(s)
is a noncommutative analogue for the

s-chromatic symmetric function studied in [BHM15].
Next we show that coloring in a uniform hypergraph can be thought of as an instance of coloring in a

simplicial complex. Given anyH = (V,E) we get a simplicial complex Γ(H) on the vertex set V defined
by

Γ(H) = {A : A ⊆ e ∈ E} ∪ {{v} : v ∈ V }.

Lemma 17. A map f is a proper coloring of an (s + 1)-uniform hypergraph H if and only if f is an
s-simplicial coloring of Γ(H).

Note a simplicial complex is determined completely by its facets, and we can rephrase the property of
being an s-simplicial coloring in terms of facets. For a simplicial complex Γ with vertex set V a map
f : V → P is an s-simplicial coloring if and only if each facet of Γ contains at most s vertices of a given
color. If H is an (s + 1)-uniform hypergraph, then Γ(H) is the simplicial complex with facets given by
the hyperedges of H along with possibly a some isolated vertices. In particular, the simplicial complex
Γ(H) can be obtained from H in linear time.

We define the decision problem (k, s)-SIMPLICIAL COLORABLE which takes as input a simplicial
complex Γ and outputs true if and only if Γ can be s-simplicial colored using at most k colors. Sim-
ilarly we define the decision problem (k, s)-COLORABLE which takes as input a s-uniform hypergraph
H and outputs true if and only if H can be properly colored using at most k colors. Thus Lemma 17
says by considering H 7→ Γ(H) we have a polynomial time reduction from (k, s + 1)-COLORABLE to
(k, s)-SIMPLICIAL COLORABLE. We get the following proposition which addresses the question NP-
completeness of simplicial coloring asked in [BHM15]. We use the fact that (k, s)-COLORABLE is NP-
complete unless k = 1, s = 1, or (k, s) = (2, 2) [Lov73].

Proposition 18. For k = 1 or (k, s) = (2, 1) we have (k, s)-SIMPLICIAL COLORABLE ∈ P and for all
other pairs (k, s) we have that (k, s)-SIMPLICIAL COLORABLE is NP-complete.

Proof. We certainly have the (k, s)-SIMPLICIAL COLORABLE ∈ NP for any (k, s). Note the if s = 1 we
are considering graph coloring and if k = 1 we simply need to determine the dimension of the simplicial
complex. The NP-hardness for k 6= 1 and (k, s) 6= (2, 1) follows from the polynomial time reduction
from (k, s+ 1)-COLORABLE by H 7→ Γ(H).
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