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A type B analog of the Lie representation

Andrew Berget†

Department of Mathematics, Western Washington Univeristy, Bellingham, Washington, USA

Abstract. We describe a type B analog of the much studied Lie representation of the symmetric group. The nth
Lie representation of Sn restricts to the regular representation of Sn−1, and our generalization mimics this property.
Specifically, we construct a representation of the type B Weyl group Bn that restricts to the regular representation of
Bn−1. We view both of these representations as coming from the internal zonotopal algebra of the Gale dual of the
corresponding reflection arrangements.

Résumé. Nous décrivons un type B analogue de la bien connue représentation Lie du group symmetrique. Le
représentation Lie est un représentation de Sn qui restreint à la représentation régulière de Sn−1, et notre géneralisation
imite cette propriété. Plus précisément, nous construisons une représentation de group Weyl Bn qui restreint à la
représentation régulière de Bn−1. Ces deux représentations sont des occurrences de l’algèbre interne zonotopal de
dual Gale des arrangements de réflexion respectifs.
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1 Introduction
We consider the polynomial ring S in two sets of variables yij and zij , where 1 ≤ i < j ≤ n. We have
the following conventions on the indices: For all 1 ≤ i, j ≤ n with i 6= j, yji = −yij and zji = zij .

This ring has an action of the Weyl group of type B, which we denote by Bn. Recall that this is the
group of signed permutations of n letters, which are permutations w of {1, 1̄, 2, 2̄, . . . , n, n̄} satisfying
the rule w(̄i) = w(i) for all 1 ≤ i ≤ n. The action of (ij)(̄ij̄) on S is by permuting the indices of the y’s
and z’s, while the action of (kk̄) is by the rules

(kk̄)yij =


yij k /∈ {i, j},
zij k = i,

−zij k = j,

(kk̄)zij =


zij k /∈ {i, j},
yij k = i,

−yij k = j.

The main result of our work is the following.

Theorem 1.1 Define an ideal in S = C[yij , zij : 1 ≤ i < j ≤ n] by

J = 〈y2ij , z2ij , yijzij : 1 ≤ i < j ≤ n〉+ 〈yjiyik + yijyjk + yikykj ,

zjiyik − zijzjk − yikzkj : 1 ≤ i < j < k ≤ n〉
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Then, J is Bn stable. The quotient S/J has Hilbert series

(1 + 2q)(1 + 4q) · · · (1 + (2n− 2)q).

The top degree component of S/J restricts to the regular representation of Bn−1.

We propose the top degree component of the quotient S/J as a type B analog of the Lie representation
of the symmetric group Sn, Lien. One definition of Lien is as the multilinear component of the free Lie
algebra on n generators. Lien arises in the study of the cohomology of configuration spaces as well as in
poset homology. As we will see, there is a general construction for hyperplane arrangements that yields
both the Lie representation, and the quotient in Theorem 1.1.

Remark 1.2 There is a well-studied representation of Bn that bears a striking similarity to the one in
Theorem 1.1: the Orlik-Solomon algebra of the reflection arrangement of type B/C. This is a model
for the cohomology of the complexified complement of this arrangement [OS], and is different than the
construction in Theorem 1.1 in a few fundamental ways.

Most naively, the Orlik-Solomon algebra is a skew-commutative algebra on n2 generators. The quotient
in Theorem 1.1 is honestly commutative on n(n−1) generators. The primal object for the Orlik-Solomon
algebra is the type B arrangement itself, while for Theorem 1.1 it will turn out to be the Gale dual of this
arrangement.

The Hilbert series of the Orlik-Solomon algebra of the type B reflection arrangement is

(1 + q)(1 + 3q) · · · (1 + (2n− 1)q)

and its top degree component has dimension 1 · 3 · 5 · · · (2n − 1). This is the dimension of the whole
quotient occurring in Theorem 1.1, not a single graded piece. There is no obvious gradation of the top
cohomology of the Orlik-Solomon algebra.

The representation-theoretic properties of the Orlik-Solomon algebra of a reflection arrangement of
a root system were studied by Lehrer and Solomon [LS] and in type B specifically by Douglas [Do].
Work of Bergeron [Be] connects a hyperoctohedral analog of the Lie representation to the Orlik–Solomon
algebra of the hyperoctohedral arrangement. He proves an isomorphism between this generalized Lie
representation and a twisted Orlik–Solomon algebra.

There is a Bn invariant submodule of the Orlik-Solomon algebra of the reflection arrangement of Bn
whose restriction to Bn−1 is the regular representation. This is the natural candidate to relate the top
degree component of S/J to. Already for n = 4 one finds that the characters of these Bn representations
differ. Indeed the character of S/J evaluated at (12)(34)(1̄2̄)(3̄4̄) is 0 while the character of the potential
analog in the Orlik-Solomon algebra is −8. The character of S/J will be computed in future work.

The quotient ring of Theorem 1.1 is the so-called internal zonotopal algebra of the type B reflection
arrangement. These algebras were studied by Holtz and Ron [HR], where connections to box splines are
made, and later by Ardila and Postnikov [AP10, AP15], among others.

The structure of the paper is as follows. We first review background on zonotopal algebra and Gale
duality. Next, we motivate Theorem 1.1 by studying the internal zonotopal algebra of the Gale dual of
the braid arrangement. This makes a connection to the well-studied Whitehouse representation of the
symmetric group through work of Mathieu [Ma], Gaiffi [Ga], and Robinson and Whitehouse [RW]. We
then study the internal zonotopal algebra of the Gale dual of the type B reflection arrangement and prove
Theorem 1.1. Lastly, we propose the study of decreasing ±trees, which are a type B analog of decreasing
trees.
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2 Background
First we review results of Ardila–Postnikov and Holtz–Ron on so-called zonotopal algebra, which we will
later specialize. Following this we recall the notion of Gale duality.

2.1 Zonotopal algebras of hyperplane arrangements
Let A be a central arrangement of hyperplanes in a complex finite dimensional vector space V . We let
M = M(A) denote the matroid of A. Recall that this is the matroid of the linear forms defining the
arrangement, where a set of linear forms is independent when it is a linearly independent set of vectors.

Define a function ρA : V → N by the rule

ρA(h) = the number of hyperplanes in A not containing h,

and use this to define the ideal

IA,k = 〈hρA(h)+k+1 : h ∈ V 〉 ⊂ Sym(V ).

For k ≥ 2 the quotient Sym(V )/IA,k has Krull dimension zero, and so it is a finite dimensional complex
vector space. The vector space dimension of this quotient is also called the degree. The ring Sym(V ) is
graded in the usual way, and we denote the mth graded piece of a graded module over this ring by (−)m.
The ideal IA,k is graded, since it is generated by powers of linear forms, which are homogeneous. The
Hilbert series of Sym(V )/IA,k is the generating function for the dimensions of the graded pieces of this
graded Sym(V )-module.

We will describe the Hilbert series of Sym(V )/IA,k in terms of the matroid of A. To do so, we need
the Tutte polynomial of a matroid. We take the most expedient route: The Tutte polynomial of a matroid
M with ground set E and rank function rk : 2E → N is the bivariate polynomial

TM (x, y) =
∑
A⊂E

(x− 1)rk(E)−rk(A)(y − 1)|A|−rk(A).

Theorem 2.1 (Ardila–Postnikov [AP10], Holtz-Ron [HR]) Let M = M(A) denote the matroid of the
arrangement A, which consists of m hyperplanes. The Hilbert series of the quotient Sym(V )/IA,k is
equal to

1. qm−rk(M)TM (1 + q, 1/q) if k = 0;

2. qm−rk(M)TM (1, 1/q) if k = −1;

3. qm−rk(M)TM (0, 1/q) if k = −2.

The quotients Sym(V )/IA,k occurring in the theorem are, respectively, referred to as the external, central
and internal zonotopal algebras of A. The most subtle case of the theorem is the third [AP15]. In the first
two cases explicit bases of the Macaulay inverse system of IA,k can be given [AP10], while in the case
k = −2 there is no known canonical basis described by the matroid M . Naturally, the third case is the
one that interests us in the sequel.
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2.2 Gale duality
Definition 2.2 Given a r-by-m matrix N , let N⊥ be any matrix whose rows span the (right) kernel of N .
We call N⊥ a Gale dual of N . IfA is an arrangement in Cr whose defining linear forms are the columns
of N , then A⊥ is an arrangement whose defining linear forms are the columns of some N⊥.

There is considerable flexibility in determining the Gale dual of a matrix. If we insist that N⊥ be a full
rank matrix then it is uniquely determined modulo the left action of the general linear group by matrix
multiplication. Note that N⊥ will have dimensions (m − rank(N))-by-m, and that N is always a Gale
dual of N⊥. If there is a block-matrix decomposition N = [I|A] then N⊥ = [−At|I] will be Gale dual
of N .

Gale duality is a geometric realization of matroid duality, which we now explain. IfM is a matroid with
ground set E then one can construct a new matroid M⊥, the dual matroid, whose bases (i.e., maximal
independent sets) are complements of bases of M . This is an honest duality in the sense that (M⊥)⊥ =
M . One has M(A⊥) = M(A)⊥.

The following relation holds between the Tutte polynomials of M and M⊥:

TM⊥(x, y) = TM (y, x). (1)

It follows that the Hilbert series of Sym(V )/IA⊥,−2 is given by qrk(A)TM(A)(1/q, 0).

3 The braid arrangement
In this section we introduce the braid arrangement. We apply the construction of Section 2.1 to its Gale
dual, which we do to motivate the results that will follow.

3.1 The braid arrangement
The braid arrangement in Cn+1 is the arrangement An+1 defined by the linear forms

xj − xi, (1 ≤ i < j ≤ n+ 1).

It is the reflection arrangement of the type A Weyl group, Sn+1. The natural action of the symmetric group
Sn+1 on Cn+1 passes to C[x1, . . . , xn+1], and the ideals IAn+1,k are invariant under this action. The
Macaulay inverse system of IAn+1,−1 has dimension nn−2, and was studied by the author and Rhoades
in [BR]. There it was shown to be a representation of the symmetric group Sn+1 that restricted to the
well studied parking representation of Sn. This is the representation with basis give by sequences p =
(p1, . . . , pn) whose non-decreasing rearrangement q satisfies qj ≤ j for all 1 ≤ j ≤ n.

One can choose the Gale dual of An+1 so that it too has a natural Sn+1 action. This is most easily
described in terms of graph theory. The arrangement An+1 is the graphic arrangement of the complete
graph on n+ 1 vertices, Kn+1. The matrix of normal vectors of the hyperplanes inAn+1 is the incidence
matrix of Kn+1. The (right) kernel of this matrix is well known to be the cycle space of Kn+1. This is
the subspace of the edge space spanned by oriented cycles in the graph.

Recall that the edge space of Kn+1 is the complex vector space with distinguished basis eij , (1 ≤ i <
j ≤ n + 1). We identify the edge space with its dual, defining {eij} to be an orthonormal basis. We set
eij = −eji. The cycle space Zn+1 of Kn+1 is subspace of the edge space spanned by the length 3 cycles,

eij + ejk + eki, (i, j, k pairwise unequal).
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A basis is furnished by those 3 cycles visiting n+ 1, which we write as

yij = eij + ej(n+1) + e(n+1)i, (1 ≤ i < j ≤ n).

Notice that yji = −yij and that the transpositions (k(n+ 1)) act by the rule:

(k(n+ 1))yij =

{
yij + yjk + yki k /∈ {i, j},
−yij k ∈ {i, j}.

(2)

The Gale dual of An+1 is the arrangement in Zn+1 given by the
(
n+1
2

)
many hyperplanes,

yij , (1 ≤ i < j ≤ n)∑
j

yij , (1 ≤ i ≤ n).

3.2 The internal zonotopal algebra of the Gale dual of the braid arrangement
We start with the following result.

Proposition 3.1 The Hilbert series of the quotient Sym(Zn+1)/IA⊥n+1,−2 is given by

(1 + q)(1 + 2q) · · · (1 + (n− 1)q).

Proof: The Hilbert series is obtained by computing qnTAn+1
(1/q, 0). This is obtained by massaging the

Tutte polynomial evaluation (−1)nqTAn+1
(1− q, 0) = q(q − 1) · · · (q − n+ 1), which is the chromatic

polynomial of Kn. 2

The dimensions of the graded pieces of the quotient are signless Stirling numbers of the first kind.
The following description of IA⊥n+1,−2 is new, although the ideal appearing in it has arisen before.

Theorem 3.2 The ideal IA⊥n+1,−2 is equal to

〈y2ij : 1 ≤ i < j ≤ n〉+ 〈yijyki + yjiykj + ykiyjk : 1 ≤ i < j < k ≤ n〉

Let J denote the ideal in question. We will prove the theorem using two lemmas, although there are many
different ways to prove the result. The first lemma states that J ⊂ IA⊥n+1,−2. The second lemma states
that the displayed generators of J form a Gröbner basis, and we will use this to see that the dimension of
Sym(Zn+1)/J , as a vector space, is n!. This will force the two ideals to be equal.

Lemma 3.3 There is a containment J ⊂ IA⊥n+1,−2.

Proof: Consider the function ρA⊥n+1
used to define IA⊥n+1,k

. If z is the sum of the edges in an oriented
cycle ofKn+1 then ρA⊥n+1

(z) is equal to the number of edges in z. It follows that y2ij ∈ IA⊥n+1,k
. Consider

the cycle that travels from vertex i to vertex j to vertex k and back to i. Writing this in terms of the basis
described above, it is

yij + yjk + yki
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Taking the square of this and subtracting off the squared monomials gives

yijyki + yijyjk + ykiyjk

The desired inclusion follows. 2

Lemma 3.4 The set of polynomials,

y2ij , (1 ≤ i < j ≤ n), −yijyik + yijyjk − yikyjk, (1 ≤ i < j < k ≤ n).

forms a Gröbner basis under any term order where the leading terms are underlined above.

Proof: We use the fact that syzygies of polynomials with relatively prime leading terms need not be
computed [Ei, Exercise 15.20]. By symmetry, the computation reduces to the case when n = 4. This case
is easily checked with a computer (e.g., using [M2]). 2

Proof of Theorem 3.2: The ideal of leading terms of J is 〈y2ij : 1 ≤ i < j ≤ n〉+ 〈yijyjk : 1 ≤ i < j <
k ≤ n〉. It follows that a basis for Sym(Zn+1)/J consists of square-free monomials in the yij that avoid
yijyik, for 1 ≤ i < j < k ≤ n. These monomials are in obvious bijection with the set of decreasing
forests on n vertices. These are forests with vertex set [n] where, in every component, each path directed
away from the largest vertex in that component decreases. Adding a vertex labeled n+ 1 and connecting
the largest vertex in each component to n + 1, we obtain a bijection between decreasing forests on n
vertices, and decreasing trees on n + 1 vertices. By [EC1, Proposition 1.5.5], there are exactly n! such
trees.

It follows that the dimension of Sym(Zn+1)/J as a vector space is n!. Since this is the dimension of
Sym(Zn+1)/IA⊥n+1,−1 and there is a containment between J and IA⊥n+1,−1, the two ideals are equal. 2

We recall the bijective proof of [EC1, Proposition 1.5.5]. Given a permutation w = w1 . . . wn ∈ Sn
we define a decreasing tree on vertex set [n+ 1] as follows. Write w′ = w1 . . . wn(n+ 1), and for i ≤ n
declare the parent of w′i to be first w′j with j > i and w′i < w′j .

With Theorem 3.2 in hand, one sees that IA⊥n+1,−1 has been studied before by Mathieu [Ma, Theo-
rem 3.1] and Gaiffi [Ga]. In the former work, IA⊥n+1,−1 is connected to space of multilinear free Poisson
polynomials in n variables.

Remark 3.5 The action of the symmetric group Sn+1 on Sym(Zn+1)/IA⊥n+1,−2 is obvious from our
coordinate free description. In the coordinates yij (1 ≤ i < j ≤ n) the extension of the natural action of
Sn on the quotient via equation (2) is an important result of both [Ma] and [Ga]. The action of Sn+1 on
the Lie representation appears to have first been observed by Kontsevich.

Theorem 3.6 ([Ma, Theorem 4.4]) Let E denote the representation of Sn obtained by grading the stan-
dard representation Cn in the following way: The trivial representation is in degree zero, while its unique
Sn-invariant complement is in degree 1. There is an isomorphism of Sn-representations,

Res
Sn+1

Sn
Sym(Zn+1)/IA⊥n+1,−1 ≈ Sym(Zn)/IA⊥n ,−1 ⊗ E.

As a representation of Sn, the character of Sym(Zn+1)/IA⊥n+1,−1 is given by the sign twisted Lie

character sign⊗IndSn

〈(12···n)〉e
2πi/n. As a representation of Sn−1, it is isomorphic to the regular represen-

tation. As a representation of Sn+1, Sym(Zn+1)/IA⊥n+1,−1 is isomorphic to the sign twisted Whitehouse
representation [RW].
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For an introduction to the Whitehouse representation and its relation to the Lie representation, see
Robinson and Whitehouse [RW], as well as the excellent slides of Stanley [St].

4 The type B reflection arrangement
We consider the arrangement Bn in Cn defined as the vanishing of the linear forms,

xi, (1 ≤ i ≤ n), xj + xi, (1 ≤ i < j ≤ n), xj − xi, (1 ≤ i < j ≤ n).

This is the (complexified) arrangement of reflecting hyperplanes of the root system of type B and that of
type C, also known as the hyperoctohedral arrangement.

The Weyl group of the type B/C root system in Cn is the hyperoctohedral group Bn. This is the group
of signed n-by-n permutation matrices. As such, elements of Bn can be thought of as permutations w
of {±1,±2, . . . ,±n} satisfying w(−i) = −w(i) for all 1 ≤ i ≤ n. We will write elements of Bn as
“one-line permutations” and in disjoint cycle notation. We will usually write ī instead of −i.

4.1 The Gale dual of Bn
There is a natural candidate for the Gale dual of Bn that respects, in a suitable sense, the action of the
hyperoctohedral group Bn on complex n-space. The Gale dual of Bn will be a subspace of the space
of linear functions defined on the n2 hyperplanes in Bn. This latter space comes with a distinguished
basis {fi : 1 ≤ i ≤ n} ∪ {f±ij : 1 ≤ i < j ≤ n}, in bijection with the hyperplanes in Bn. Using this
distinguished basis to define an orthonormal basis, we can identify subspaces of this space of functionals
with their duals.

We adhere to the following conventions:

f+ji = f+ij , f−ji = −f−ij .

There is a natural action of Bn on the space of linear functions on the hyperplanes in Bn. Permutations
of the form (ij)(̄ij̄) act by permuting subscripts of the fs, while permutations of the form (kk̄) act by the
following rules:

(kk̄)fi =

{
fi i 6= k,

−fi i = k.
(kk̄)f±ij =


f±ij k /∈ {i, j}
f∓ij i = k

−f∓ij j = k.

Definition 4.1 Denote by Rn the subspace of forms on Bn spanned by

yij = f−ij − (fj − fi), zij = f+ij − (fj + fi), (1 ≤ i < j ≤ n).

This is the n(n − 1) dimensional vector space of linear relations among the linear forms on Bn, and
the displayed vectors form a basis for this space. Rn is at once seen to have a Bn action. We have the
following consequences (among others) of the above rules:

yji = −yij , zji = zij , (īi)yij = zij , (jj̄)yij = −zij .

The Gale dual B⊥n of Bn is the arrangement in Rn defined by the vanishing of the n2 linear forms

yij , zij (1 ≤ i < j ≤ n),
∑
j

(yij − zij) (1 ≤ i ≤ n).

Our first goal is to describe IB⊥n ,−2 in a form similar to that of Theorem 3.2.
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Theorem 4.2 The ideal IB⊥n ,−2 is equal to

J = 〈y2ij , z2ij , yijzij : 1 ≤ i < j ≤ n〉+ 〈yjiyik + yijyjk + yikykj ,

zjiyik − zijzjk − yikzkj : 1 ≤ i < j < k ≤ n〉.

4.2 The proof of Theorem 4.2
We will need the following result.

Proposition 4.3 The quotient Sym(Rn)/IB⊥n ,−2 has Hilbert series

(1 + 2q)(1 + 4q) · · · (1 + (2n− 2)q).

Proof: This follows in similar way to Proposition 3.1: First apply Theorem 2.1 to see that we must
evaluate the Tutte polynomial of Bn at (1/q, 0). Then use a result of Zaslavsky [Za, Theorem 3] that
relates the chromatic polynomial of Kn with its signed version ±Kn. 2

We will prove the theorem after first proving two lemmas.

Lemma 4.4 There is a containment of ideals J ⊂ IB⊥n ,−2.

Proof: The following linear forms define lines of the arrangement B⊥n :

yij , zij , yij ± zij , yij + yjk + yki, zij − zjk + yki.

The number of hyperplanes that each of these does not lay on is 3, hence each of their squares is in
IB⊥n ,−2. Subtracting off the squared monomials from the squares of the latter three linear forms gives us
the generators of J . 2

Lemma 4.5 The top degree component of Sym(Rn)/J is spanned by monomials of the form

xw(1)w(2)xw(2)w(3) . . . xw(n−1)n

where x ∈ {y, z} and w ∈ Sn.

Proof: Recall that J is the sum of two ideals:

J1 = 〈y2ij , z2ij , yijzij : 1 ≤ i < j ≤ n〉,
J2 = 〈yjiyik + yijyjk + yikykj , zjiyik + zijzjk − yikzkj : 1 ≤ i < j < k ≤ n〉.

Using just J1, the non-zero monomials in the quotient are in obvious bijection with graphs on [n], where
the edges are signed with exactly one of y or z. We claim that all these graphs are acyclic.

Say that a monomial corresponds to a graph with a length three cycle. Using the relations in J2 we may
rewrite the given monomial as a sum of elements in J1. Hence, this monomial is zero in the quotient.

Suppose that we choose a monomial that corresponds to a graph G with a cycle of length larger than
three. Using, again, the relations in J2 we find that the given monomial for G can be written as a linear
combination of monomials corresponding to two graph G′ and G′′, each with cycles of smaller length.
See Figure 1. By induction, this monomial is zero in the quotient.
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Fig. 1: Rewriting a monomial corresponding to a graph with a cycle of length larger than 3 in terms of two monomials
whose graphs have cycles of smaller length.

We conclude that the non-zero monomials in the quotient correspond to acyclic graphs. It follows
that the monomials of maximum degree correspond to trees, since the top degree non-zero component of
Sym(Rn)/J is in degree at least n− 1.

Given a monomial and corresponding tree T with edges signed y or z, assume that the degree of n
is larger than 1. Take the two largest indexed children of n. These come from a factor xinxjn in the
monomial. Using J2, we can rewrite this monomial as a sum of two monomials corresponding to graphs
where n has smaller degree than when we started. By an obvious induction, this monomial is in the span
of the monomials of the form

xw(1)w(2)xw(2)w(3) . . . xw(n−1)n,

where x ∈ {y, z}. This completes the proof of the lemma. 2

Proof of Theorem 4.2: Applying the same idea used in the proof of Lemma 4.5 we can identify a spanning
set of monomials for Sym(Rn)/J . A spanning set is given by monomials in bijective correspondence
with forests on [n], each component of which is a path with edges signed y or z, and each path having its
largest labeled vertex of degree one.

As computed in Lemma 4.5 the number of such forests which are connected is 2n−1(n − 1)!. Using
the exponential formula, the number of forests in question has exponential generating function

exp(

∞∑
n=1

2n−1(n− 1)!xn/n!) =
1√

1− 2x
=

∞∑
n=0

(1 · 3 · 5 · · · (2n− 1))
xn

n!
.

Thus, we have found a spanning set of 1 · 3 · 5 · · · (2n − 1) monomials of Sym(Rn)/J . Since this is
the dimension of Sym(Rn)/IBn,−2 and we have a containment J ⊂ IBn,−2, the containment must be an
equality. 2

As an immediate corollary of the theorem we obtain the main result of our work:

Theorem 4.6 As a representation of the Weyl groupBn−1, the top degree component of Sym(Rn)/IB⊥n ,−2
carries the regular representation.

Proof: It has the correct dimension, 2n−1(n − 1)!, and was just shown to be spanned by the Bn−1 orbit
of y12y23 · · · y(n−1)n. The result follows. 2
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4.3 Recurrence
In this section we give an analog of the first part of Theorem 3.6. For this we must recall that that the
irreducible representations of Bn are in bijective correspondence with pairs of partitions (λ, µ), where
|λ|+ |µ| = n (see [Ma, App. B]). We denote the irreducible representation indexed by (λ, µ) by S(λ,µ).

Theorem 4.7 Let E be the graded representation of Bn−1 that is trivial in degree zero and is the direct
sum of S((n−2,1),∅) and S((1),(n−2)) in degree one. There is an isomorphism of Bn−1 representations

ResBn

Bn−1
Sym(Rn)/IB⊥n ,−2 ≈ Sym(Rn−1)/IB⊥n−1,−2 ⊗ E.

Proof (sketch): The idea is to separate out the monomials of the form yij and zij with 1 ≤ i < j < n,
from those of the form yin and zin with 1 ≤ i < n. Both of these collections span aBn−1 stable subspace
of Rn, and the character of the latter representation is isomorphic to the degree one component of E. 2

5 Decreasing trees of type B/C
In this section we introduce a combinatorial curiosity, which we believe to be the proper analog of de-
creasing trees to the hyperoctohedral setting.

Definition 5.1 A ±tree on n vertices is a rooted tree with vertex set [n] and root vertex n, together with a
{+,−}-coloring of its edges. A decreasing ±tree on n vertices is a ±tree on n vertices such that on any
path directed away from the root,

1. along every edge labeled − the vertex labels decrease,

2. for i < j and arbitrary k, there is no path of the form

j
− // i

+ // k ,

3. for all i1 < i2 < i3 < i4, there is no subpath of any of the three forms, or their reverse,

i4
+ // i1

+ // i2
+ // i3 ,

i4
+ // i1

+ // i3
+ // i2 ,

i4
+ // i2

+ // i1
+ // i3 .

If we ignore the possibility of edges labeled + this definition reduces to that of decreasing trees given
previously.

Example 5.2 Here are the 8 decreasing ±trees on 3 vertices.
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−
��

3

+

��

3

+

��

3

+

��
2

−
��

2

−
��

2

+

��

1

+

��
1 1 1 2

3

−
��

−




1 2

3

+

��
−




1 2

3

−
��

+




1 2

3

+

��
+




1 2
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Example 5.3 There are 48 decreasing±trees on 4 vertices. Exactly 8 such trees are isomorphic to a path
rooted at an endpoint, and these are displayed below.

4

−
��

4

+

��

4

+

��

4

+

��

4

+

��

4

+

��

4

+

��

4

+

��
3

−
��

3

−
��

3

+

��

3

+

��

3

+

��

2

+

��

2

+

��

1

+

��
2

−
��

2

−
��

2

−
��

2

+

��

1

+

��

3

+

��

3

−
��

3

−
��

1 1 1 1 2 1 1 2

Theorem 5.4 The number of decreasing ±trees on n vertices is 2n−1(n− 1)!.

Proof: We know from the proof of Lemma 4.5 that the graphs corresponding to monomials not in
IB⊥n ,−2 are ±trees. We now show that the monomials of decreasing ±trees form a basis for the quo-
tient Sym(Rn)/IB⊥n ,−2.

For this, we claim that a Gröbner basis of IB⊥n ,−2 is furnished by the following monomials:

y2ij , z2ij , yijzij , zijzjkzki

where i, j and k range of distinct triples of integers, as well as the polynomials

yjiyik + yijyjk + yikykj , zjiyik + zijzjk − yikzkj ,

where the indices range over distinct tuples of integers, and finally given 1 ≤ i1 < i2 < i3 < i4 ≤ n the
polynomials,

zi1i2zi1i3zi2i4 − zi1i2zi1i3zi3i4 − zi1i2zi2i4zi3i4 + zi1i3zi2i4zi3i4 ,

zi1i3zi2i3zi1i4 − zi1i3zi2i3zi2i4 − zi1i3zi1i4zi2i4 + zi2i3zi1i4zi2i4 ,

zi1i2zi2i3zi1i4 − zi1i2zi2i3zi3i4 − zi1i2zi1i4zi3i4 + zi2i3zi1i4zi3i4 .

We use any term order where the underlined monomials are leading terms (such as graded-reverse lexico-
graphic order with the y’s coming before the z’s).

To see this one applies the Buchberger algorithm to the generators of IB⊥n ,−2 given in Theorem 4.2.
As before, we use [Ei, Exercise 15.20] to reduce the computation to the case n = 4, since we need not
resolve the syzygies of pair of polynomials with relatively prime leading terms. This case is, once again,
handled at once by a computer to produce the described Gröbner basis. 2

A bijective proof of this result generalizing the one for ordinary decreasing trees is not known.
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