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A Hopf algebra of subword complexes
(Extended abstract)

Nantel Bergeron1† and Cesar Ceballos2‡
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Abstract. We introduce a Hopf algebra structure of subword complexes, including both finite and infinite types. We
present an explicit cancellation free formula for the antipode using acyclic orientations of certain graphs, and show
that this Hopf algebra induces a natural non-trivial sub-Hopf algebra on c-clusters in the theory of cluster algebras.

Résumé. Nous introduisons une structure d’algèbre de Hopf sur les complexes de sous-mots de types fini et infini.
Nous présentons une formule explicite sans cancelation pour l’antipode qui utilise les orientations acycliques. Nous
donnons une sous-algèbre de Hopf naturel non-trivial sur les C-clusters dans la théorie des algèbres amassées.

Keywords. Subword complexes, Hopf algebras, antipode, cluster algebras

1 Introduction

Subword complexes are simplicial complexes introduced by Knutson and Miller, and are motivated by
the study of Gröbner geometry of Schubert varieties [14, 15]. These complexes have been shown to have
striking connections with diverse topics such as associahedra [16], multi-associahedra [13], pseudotrian-
gulation polytopes [21], and cluster algebras [9].

The first connection between subword complexes and associahedra was discovered by Pilaud and Poc-
chiola who showed that every multi-associahedron can be obtained as a well chosen type A subword
complex in the context of sorting networks [17]. These results were generalized to arbitrary finite Coxeter
groups by Ceballos, Labbé and Stump in [4]. The results in [4] provide an additional connection with
the c-cluster complexes in the theory of cluster algebras, which has been used as a keystone for explicit
results about denominator vectors in cluster algebras of finite type [5]. A construction of certain brick
polytopes of spherical subword complexes is presented in [18, 19], which is used to give a precise de-
scription of the toric varieties of c-generalized associahedra in connection with Bott-Samelson varieties
in [7]. More recent developments on geometric and combinatorial properties of subword complexes are
presented in [3, 8, 23].

†Email: bergeron@yorku.ca. Partially supported by NSERC.
‡Email: cesar.ceballos@univie.ac.at. Partially supported by the government of Canada through a Banting Post-

doctoral Fellowship, by a York University research grant, and by the Austrian Science Foundation FWF, grant F 5008-N15, in the
framework of the Special Research Program “Algorithmic and Enumerative Combinatorics”.

1365–8050 c© 2016 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/dmtcs-ojs/index.php/volumes/
http://www.dmtcs.org/dmtcs-ojs/index.php/volumes/dmBCind.html


180 Nantel Bergeron and Cesar Ceballos

This paper presents a more algebraic approach to subword complexes. We introduce a Hopf alge-
bra structure on the vector space generated by all facets of irreducible subword complexes, including
both finite and infinite types. Such facets include combinatorial objects such as triangulations and multi-
triangulations of convex polygons, pseudotriangulations of any planar point set in general position, and
c-clusters in cluster algebras of finite type. We present an explicit cancellation-free formula for the an-
tipode using acyclic orientations of certain graphs. It is striking to observe that we obtain a result very
similar to the antipode formula of Humpert and Martin for the incidence Hopf algebra of graphs [12]. As
in [2], our combinatorial Hopf algebra is part of a nice family with explicit cancelation-free formula for the
antipode. The Hopf algebra of subword complexes also induces a natural sub-Hopf algebra on c-clusters
of finite type. Cluster complexes for Weyl groups were introduced by Fomin and Zelevinsky in connec-
tion with their proof of Zamolodchikov’s periodicity conjecture for algebraic Y -systems in [10]. These
complexes encode the combinatorial structure behind the associated cluster algebra of finite type [9], and
are further extended to arbitrary Coxeter groups by Reading in [20]. The resulting c-cluster complexes use
a Coxeter element c as a parameter and have been extensively used to produce geometric constructions of
generalized associahedra [11, 22, 19]. The basis elements of our Hopf algebra of c-clusters are given by
pairs of clusters (A, T ) of finite type, where A is any acyclic cluster seed and T is any cluster obtained
from it by mutations. The multiplication and comultiplication operations are natural from the cluster al-
gebra perspective on T . However, subword complexes allow us to nontrivially extend these operations to
remarkable operations on the acyclic seed A.

The outline of the paper is as follows: In Section 2 we present the concept of subword complexes,
some examples and a decomposition theorem needed for the Hopf algebra structure. In Section 3 we
give the Hopf structure and compute explicitly a cancelation-free formula for the antipode. In Section 4
we show that this Hopf algebra induces a sub-Hopf algebra on c-clusters of finite type and present a
combinatorial model description for Cartesian products of classical types. The full paper (31 pages) is
available on ArXive1508.01465, here we omit the proofs, many of the comments and some other features.
In particular, our theorems and constructions work for infinite Coxeter groups as well.

2 Subword Complexes
Let W be a possibly infinite Coxeter group with generators S = {s1, . . . , sn}. This group acts on a real
vector space V , we denote by ∆ := {αs | s ∈ S} the set of simple roots of a root system Φ = Φ+ t Φ−

associated to W . Throughout the paper, for simplicity, we think of W as the tuple (W,S,Φ+) containing
the information of the group, its generators and the decomposition of its root system Φ = Φ+ t −(Φ+).

Definition 2.1 ([14]) Let Q = (q1, . . . , qr) be a word in S and π ∈ W be an element of the group.
The subword complex SC(Q, π) is a simplicial complex whose faces are given by subsets I ⊂ [r] =
{1, 2, . . . , r}, such that the subword of Q with positions at [r] r I contains a reduced expression of π.

Example 2.2 LetW = S3 be the symmetric group generated by the simple transpositions S = {s1, s2} =
{(1 2), (2 3)}. Let Q = (q1, q2, q3, q4, q5) = (s1, s2, s1, s2, s1) and π = s1s2. Since the reduced
expressions of π in Q are given by q1q2 = q1q4 = q3q4 = π, the maximal faces of SC(Q, π) are
{3, 4, 5}, {2, 3, 5} and {1, 2, 5}. This subword complex is illustrated in Figure 1, where we use the network
diagrams used by Pilaud and Pocchiola in [17]. Such diagrams will be used through out the paper to
represent subword complexes of type A. The letters in the word Q are consecutively placed form left to
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right as vertical commutators in the diagram such that a generator si connects the horizontal levels i
and i+ 1 numerated from bottom to top.

s1 s1 s1s2 s2 s1 s2
,( (SC ⇠=

1 2 3 4

5

Fig. 1: Subword complex SC(Q, π) for Q = (s1, s2, s1, s2, s1) and π = s1s2 in type A2.

Two remarkable examples of subword complexes are the dual associahedron and multi-associahedron.
The first description of these two complexes as well chosen subword complexes was given by Pilaud and
Pocchiola in the context of sorting networks in [17, Section 3.3 and Theorem 23].

Example 2.3 (Multi-associahedron) LetW = S4 and S = {s1, s2, s3} = {(1 2), (2 3), (3 4)} as above,
Q = (s1, s2, s3, s1, s2, s3, s1, s2, s3, s1, s2, s1) and π = [4 3 2 1]. The subword complex SC(Q, π) is
isomorphic to the (simplicial) multi-associahedron ∆8,2. The vertices of this complex are the 2-relevant
diagonals of a convex 8-gon, that is diagonals that leave at least two vertices of the polygon on each of its
sides. The faces are subsets of 2-relevant diagonals not containing a 3-crossing, that is 3 diagonals that
mutually cross in their interiors. The thick blue diagonals in the right part of Figure 2 form a maximal
set of 2-relevant diagonals not containing a 3-crossing. The corresponding facet I = {1, 3, 7, 8, 9, 10} of
the subword complex is illustrated on the left. The bijection sends the ith letter in Q to the ith 2-relevant
diagonal of the polygon in lexicographic order. Note that the thin grey diagonals in the figure never appear
in a 3-crossing and therefore are considered to be “irrelevant”. A maximal set of diagonals (relevant or
not) of a polygon not containing a (k + 1)-crossing is known in the literature as a k-triangulation. We
refer to [4, Section 2] for more details on this bijection in the generality of [17].
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Fig. 2: Bijection between the facets of the illustrated subword complex and 2-triangulations of a convex 8-gon.

The multi-associahedron is a rich combinatorial object which is conjectured to be realizable as the
boundary complex of a convex polytope [13, Section 1.2]. Inspired by our Hopf algebra of subword
complexes, we discovered certain geometric constructions of a particular family of multi-associahedra [3].
Another important family of examples in connection with cluster complexes in cluster algebras, and the
corresponding induced Hopf algebra will be presented in Section 4.
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2.1 Root function and flats
Associated to a subword complex, one can define a root function which plays a fundamental role in the
theory. This function was introduced by Ceballos, Labbé and Stump in [4]. It encodes exchanges in the
facets of the subword complex [4] and has been extensively used in the construction of Coxeter brick
polytopes [19] and in the description of denominator vectors in cluster algebras of finite type [5].

Definition 2.4 ([4]) The root function r(I, ·) : [r] −→ Φ associated to a subset I ⊆ [r] is defined by

r(I, j) := σAj
(αqj ),

whereAj := [j−1]rI is the set of positions on the left of j that are in the complement of I , and σX ∈W
denotes the product of the elements qx ∈ Q for x ∈ X in the order they appear in Q. The root configura-
tion of I is the list R(I) := (r(I, i) : i ∈ I). We denote by r(I,Q) the list of roots (r(I, 1), . . . , r(I, r)).

All the information about the subword complex is encoded by its root function. In particular, the flips
between facets can be described as follows. Lemma 2.5 was stated for subword complexes of finite type
in [4], but the proof works exactly the same for arbitrary Coxeter groups (finite or not).

Lemma 2.5 ([4, Lemmas 3.3 and 3.6]) Let I and I ′ be two adjacent facets of the subword complex SC(Q, π)
with I r i = I ′ r i′.

(1) The position i′ is the unique position in the complement of I such that r(I, i′) ∈ {±r(I, i)}. Moreover,
r(I, i′) = r(I, i) if i < i′, while r(I, i′) = −r(I, i) if i′ < i.

(2) The map r(I ′, ·) is obtained from the map r(I, ·) by

r(I ′, k) =

{
sr(I,i)r(I, k) if min{i, j} < k ≤ max{i, j}
r(I, k) otherwise

where sr(I,i) ∈W denotes the reflection that is orthogonal (or dual) to the root r(I, i).

Example 2.6 (Example 2.3 continued) Let {α1, . . . , αn} be the simple roots of the root system of typeAn.
The positive roots can be written as positive linear combinations αi...j =

∑j
`=i α`, for 1 ≤ i ≤ j ≤ n,

and the negative roots are the roots −αi...j . The group acts on the roots according to the following rule
which is extended by linearity,

si(αj) =


−αj if i = j,

αi + αj if |i− j| = 1,

αj otherwise.

The root function of the subword complex in Example 2.3 with respect to the facet I = {1, 3, 7, 8, 9, 10}
is illustrated in Figure 3. It associates a root to each of the letters in the word, the root αi...j would be
represented in the diagram by the indices i . . . j for simplicity. For example, the indices 23 represent the
root α23 = α2 + α3. Indices corresponding to diagonals of a polygon are placed on the left of each
commutator, while indices corresponding to roots are placed on the right throughout the paper. The root
associated to a letter sj in Q can be thought as the underlined red word on the left of that letter applied
to αj .
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1

23 123 -123

-2 312

23 231

-2

2

s1 s1 s1s2s3 s3

r(I, 8) = (↵2) = ↵23

s3s1s2 s2 s2 s1

s3s1s2 s2

Fig. 3: Root function of the subword complex in Example 2.3 for the facet I = {1, 3, 7, 8, 9, 10}.

Note that exchanges in facets can be easily performed knowing the root function. For example, any of
the two thin blue commutators labeled 23 can be flipped to the unique bold red commutator 23 to form
a new facet. Similarly, any 2-relevant blue diagonal in the 2-triangulation in Figure 2 can be flipped to
a unique diagonal to form a new 2-triangulation. However such flips are much easier to visualize in the
subword complex.

Definition 2.7 A subword complex SC(Q, π) is said to be irreducible if and only if the root configura-
tion R(I) generates the vector space V for some facet I . Or equivalently, if the root configuration R(I)
generates the vector space V for any facet I (these two conditions are equivalent by Lemma 2.5(2) and
the fact that any two facets are connected by a sequence of flips). A non irreducible subword complex is
called reducible.

We will see below that every reducible subword complex is isomorphic to a subword complex of smaller
rank (Corollary 2.11). This explains our choice of terminology. Before proving this, we need a notion of
flats of a list of vectors in a vector space.

Definition 2.8 Let L = (v1, . . . , vr) be a list of vectors (with possible repetitions) spanning a vector
space V . A flat F of L is any sublist F ⊂ L that can be obtained as the intersection F = U ∩L for some
subspace U ⊂ V .

The flats of r(I,Q) will be used to define the comultiplication of the Hopf algebra structure on subword
complexes. The main ingredient in the definition is that every flat encodes the root function of a subword
complex of smaller rank, which turns out to be isomorphic to the link of a face of the initial subword
complex. This result, which we call the “Decomposition theorem of subword complexes”, has its origins
in [4] and was presented for finite types in a slightly weaker version in [19].

2.2 Decomposition theorem of subword complexes
Given a flat F of r(I,Q) denote by VF ⊂ V the subspace of V spanned by the roots in F . This subspace
contains a natural root system

ΦF = Φ+
F t Φ−F

where ΦF ,Φ
+
F ,Φ

−
F are the restrictions of Φ,Φ+,Φ− to VF respectively. We denote by ∆F the corre-

sponding set of simple roots and by WF the associated Coxeter group. In the case of infinite Coxeter
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groups, the fact that the root system intersected with a subspace is again a root system with simple roots
contained in Φ+ is a non-trivial result by Dyer in [6]. For convenience, denote by

JF = {j1, . . . , jr′} ⊂ [r]

the set of positions in Q whose corresponding roots r(I, jk) belong to F . Define βF = (β1, . . . , βr′) as
the list of roots

βk := σBjk
(αqjk ),

where Bj := ([j − 1] r I) r JF is the set of positions on the left of j in the complement of I whose
corresponding roots are not in F .

Lemma 2.9 The roots β1, . . . , βr′ are simple roots of the root system ΦF .

We will define a subword complex SC(QF , πF ) and a facet IF associated to F . Denote by

QF := (q′1, . . . , q
′
r′)

the word whose letters are the generators of the Coxeter group WF corresponding to the simple roots
β1, . . . , βr′ . The set IF corresponding to I is given by

IF := {i ∈ [r′] : ji ∈ I},

and the element πF ∈ WF is the product of the letters in the subword of QF with positions at the
complement of IF . We also denote by ĪF the face of SC(Q, π) corresponding to IF , or in other words,
the elements i ∈ I whose corresponding roots r(I, i) belong to F .

Theorem 2.10 (Decomposition theorem of subword complexes) Let I be a facet of a subword complex
SC(Q, π) of (possibly infinite) type W . If F is a flat of r(I,Q), then F is the root function of the subword
complex SC(QF , πF ) of type WF with respect to the facet IF . Moreover,

SC(QF , πF ) ∼= LinkSC(Q,π)(I \ ĪF ).

Corollary 2.11 A reducible subword complex is isomorphic to an irreducible subword complex of smaller
rank. (also see [19, Proposition 3.6] and [18, Proposition 3.7])

Example 2.12 (Example 2.3 continued) Consider the subword complex in Example 2.3 and the root
function associated to the facet I = {1, 3, 7, 8, 9, 10} (also illustrated in Figure 3):

Q = ( s1 , s2, s3 , s1, s2 , s3 , s1, s2 , s3 , s1, s2 , s1)

r(I,Q) = (α1, α2, α23, α12, α1, α123, −α2, α23, −α123, −α2, α23, α3)

Let F = (α1, α23, α1, α123, α23, −α123, α23) be the flat at positions JF = {1, 3, 5, 6, 8, 9, 11}. The
list of beta simple roots and the associated word are

βF = (α1, α23, α1, α23, α1, α23, α1)
QF = (s1, s23, s1, s23, s1, s23, s1)

There is one root in βF for each circled letter sj inQ. This root is computed by applying all the underlined
red letters which are not circled on its left to αj . For example, for the fourth circled letter, which is an s3
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in this case, one gets the root β4 = s2s1(α3) = α23. The restricted facet is IF = {1, 2, 5, 6} and the
element πF = s1s23s1. The Coxeter group WF is generated by the simple transpositions {s1, s23}, and
turns out to be isomorphic to the symmetric group S3. Thus, SC(QF , πF ) can be written as the type A2

subword complex
SC(QF , πF ) = SC((s1, s2, s1, s2, s1, s2, s1), [3 2 1]).

The tuple (WF , QF , πF , IF ) is called a flat decomposition of (W,Q, π, I).

3 A Hopf algebra of subword complexes
Let Yn be the set of equivalent classes of tuples (W,Q, π, I) where W is a (possibly infinite) Coxeter
group of rank n, and I is a facet of an irreducible subword complex SC(Q, π). For n = 0, by convention,
we assume there is a unique empty tuple 1 = (W0, ∅, ∅, ∅) and in particular |Y0| = 1. Two tuples
are considered to be equivalent, denoted by (W,Q, π, I) ∼= (W ′, Q′, π′, I ′), if and only if there is an
isomorphism φ : W → W ′ which maps generators of W to generators of W ′ such that φ(Q) = Q′ up to
commutation of consecutive commuting letters, φ(π) = π′ and I ′ are the positions in Q′ that correspond
(up to the performed commutations) to the positions of I in φ(Q). Note that such commutations only alter
the subword complexes by relabelling of its vertices.

The main result of this section is to show that the graded vector space

Y :=
⊕
n≥0

k[Yn]

may be equipped with a structure of connected graded Hopf algebra. We recommend the reader to [1] for
more on connected graded Hopf algebra’s axioms.

Remark 3.1 Note that k[Yn] is infinite dimensional. In most situations, we need finite dimensional sub-
spaces compatible with the Hopf structure. For this, we introduce a double filtration of the spaces k[Yn].
Let

k[Yn] =
⋃
m≥2
`≥1

k[Y m,`n ]

where Y m,`n is the set of equivalent classes of tuples (W,Q, π, I) such thatW is a of rank n,Q is of length
≤ `, and for any two generators si, sj ∈ S, the smallest mij such that (sisj)

mij = 1 satisfies mij ≤ m
or mij =∞. We now have that Y m,`n is finite, hence k[Y m,`n ] is finite dimensional.

3.1 Comultiplication ∆: Y → Y ⊗ Y and counit ε : Y → k.
Definition 3.2 Let V denote the space generated by R(I). A k-flat-decomposition of R(I) is a k-tuple of
flats (F1, F2, . . . , Fk) such that the Fi’s are irreducible flats of r(I,Q), that is the space VFi

spanned by
Fi is the same as the space spanned by the roots in R(IFi), and we also require that V = VF1 ⊕ VF2 ⊕
· · · ⊕ VFk

.

Definition 3.3 The subword complex comultiplication of a tuple (W,Q, π, I) is defined as

∆(W,Q, π, I) :=
∑

(F1,F2)

(WF1 , QF1 , πF1 , IF1)⊗ (WF2 , QF2 , πF2 , IF2) ,
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where the sum is over all 2-flat-decompositions (F1, F2) of R(I). The map ∆ is then extended to Y by
linearity. We have

∆: k[Y m,`n ] −→
⊕

n1+n1=n
`1+`2=`

k[Y m,`1n1
]⊗ k[Y m,`2n2

] .

The counit for ∆ is given by ε : Y → k where ε(Yn) = 0 for n > 0 and ε(1) = 1. This map clearly
satisfies the axioms of a counit. This makes (Y,∆, ε) a graded cocommutative coalgebra.

Example 3.4 (Example 2.2 continued) The comultiplication of the facet I = {2, 3, 5} of the subword
complex SC((s1, s2, s1, s2, s1), s1s2) in Example 2.2 is given in Figure 4.

� ( ( ⌦ 1
1

12

-1

12

21

12

-1

12

2

1 -1 2⌦ + 1 -1 12 12⌦ 2 12 12⌦+

1 -12 ⌦ + 1 -112 12 ⌦ 212 12 ⌦+

= ⌦1
1

12

-1

12

2
+

+

+

Fig. 4: Example of the subword complex comultiplication.

3.2 Multiplication m : Y ⊗ Y → Y and unit u : k → Y.
Let W and W ′ be two Coxeter groups with generating sets S = {s1, . . . , sn} and S′ = {s′1, . . . , s′n}
respectively. Let Φ and Φ′ be two associated root systems with simple roots ∆ = {αs | s ∈ S}
and ∆′ = {αs′ | s′ ∈ S′}. We denote by W = W × W ′ the augmented Coxeter group generated
by the disjoint union StS′, where the generators of S are set to commute with all the generators of S′. In
other words, the Coxeter graph of W is the union of the Coxeter graphs of W and W ′. The corresponding
augmented root system with simple roots ∆ t∆′ is denoted by Φ.

Throughout this section, the word Q = (q1, . . . , qr) will denote a word in S, π an element of W ,
and I ⊂ [r] a facet of the subword complex SC(Q, π). Similarly, Q′ = (q′1, . . . , q

′
r′), π′ ∈ W ′ and

I ′ ⊂ [r′] will denote their analogous for the Coxeter system (W ′, S′).

Definition 3.5 The subword complex multiplication between two tuples is defined by

(W,Q, π, I) · (W ′, Q′, π′, I ′) = (W,QQ′, ππ′, II ′),

were QQ′ = (q1, . . . , qr, q
′
1, . . . , q

′
r′) denotes the concatenation of Q and Q′, ππ′ is the product of π and

π′ in W , and II ′ denotes the shifted facet

II ′ := {k ∈ [r + r′] : k = i for some i ∈ I , or k = i′ + r for some i′ ∈ I ′}

The map m is then extended to Y ⊗ Y by linearity. We have

m : k[Y m1,`1
n1

]⊗ k[Y m2,`2
n2

] −→ k[Y
max{m1,m2},`1+`2
n1+n2

] .
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23 123
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1

32

F1 = (↵1,↵1)
F2 = (↵2,�↵2,�↵2)
F3 = (↵23,↵23,↵23)

-2 -22

23 23 23

1

32

123

-6 -4S )( =

F 0
2 = (↵2,�↵2,�↵2)

F 0
3 = (↵23,↵23,↵23)

G
0
=

+ . . .· · ·+

-123
-123

F 0
1 = (↵123,�↵123)

Fig. 5: Example of the cancellation free formula for the antipode. The number of acyclic orientations of the graph
G = G((F1, F2, F3)) is 6, while the number of acyclic orientations of G

′
= G((F ′

1, F
′
2, F

′
3)) is 4.

3.3 Hopf structure and antipode.
Theorem 3.6 The graded vector space

Y :=
⊕
n≥0

k[Yn]

equipped with the subword complex multiplication and comultiplication is a connected graded Hopf al-
gebra. This Hopf algebra is commutative and cocommutative.

We have a cancelation free formula for the antipode that involves certain graph G(K) associated to
maximal r-flat decompositions and its number of acyclic orientations a

(
G(K)

)
. see ArXive1508.01465

for more details.

Theorem 3.7 For ψ = (W,Q, π, I) we have

S(ψ) =
∑

K∈Ψ0(FD)

(−1)`(K)a
(
G(K)

)
· (WK, QK, πK, IK) .

Remark 3.8 The formula in Theorem 3.7 is cancelation-free. Only maximal refinement contribute to the
formula and isomorphic refinement all have the same length. But the formula may contain the same basis
element more than once.

4 Hopf algebra of c-clusters of finite type
In [4], Ceballos, Labbé and Stump showed that the c-cluster complexes arising from the the theory of
cluster algebras can be obtained as well chosen subword complexes. More precisely, the c-cluster complex
is the subword complex associated to the wordQ = cw◦(c) and the longest element π = w◦, where w◦(c)
is the first lexicographically subword of c∞ that is a reduced expression of w◦.

Theorem 4.1 ([4, Theorem 2.2]) For any finite Coxeter group, the subword complex SC(cw◦(c), w◦) is
isomorphic to the c-cluster complex.



188 Nantel Bergeron and Cesar Ceballos

We will see below that our Hopf algebra induces a sub-Hopf algebra structure on this family of subword
complexes. Let Cn be the subfamily of Yn corresponding to subword complexes of the form SC(cw◦(c), w◦).

Theorem 4.2 The graded vector space
C :=

⊕
n≥0

k[Cn]

equipped with the subword complex multiplication and comultiplication is a connected graded sub-Hopf
algebra of the Hopf algebra of subword complexes.

We briefly recall the definition of c-clusters and describe their Hopf algebra structure.

4.1 c-clusters
Let W be a (non necessarily irreducible) finite Coxeter group and Φ be an associated root system. The c-
cluster complex is a simplicial complex on the set of almost positive roots of Φ, which was introduced by
Reading in [20]. This complex generalizes the cluster complex of Fomin and Zelevinsky [10], and has an
extra parameter c corresponding to a Coxeter element.

Given an acyclic cluster seed A, the denominators of the cluster variables with respect to A are in
bijection with the set of almost positive roots. The variables in A correspond to the negative roots, and
any other variable to the positive root determined by the exponents of its denominator. Denote by Ac an
acyclic cluster seed corresponding to a Coxeter element c. Its associated (weighted) quiver corresponds
to the Coxeter graph oriented according to c: a pair s, t ∈ S of non-commuting generators has the
orientation s → t if and only if s comes before t in c. The c-clusters are the sets of almost positive roots
corresponding to clusters obtained by mutations from Ac. These were described in purely combinatorial
terms using a notion of c-compatibility relation by Reading in [20], and can be described purely in terms
of the combinatorial models in the classical types [5, Section 7].

For the purpose of this paper, it is more convenient to consider c-clusters as pairs (Ac, T ), where Ac is
an acyclic cluster seed corresponding to c and T is any cluster obtained from Ac by mutations. Note that
this convention is more general than the original one. For example, two pairs related by rotation give the
same c-cluster when considered as a set of almost positive roots.

The bijection in [4], relating positions inQc = cw◦(c) to cluster variables and facets of SC(cw◦(c), w◦)
to c-clusters, maps the position of ci in the prefix c of Qc to the element of Ac corresponding to ci. The
image of any other position is determined by rotation. The rotation in the classical types correspond to
rotating the polygon in counterclockwise direction in the corresponding geometric models. The rotation
in the word Qc maps the position of a letter s in Qc to the position of the next occurrence of s in Qc, if
possible, and to the first occurrence of w◦sw◦ otherwise.

4.2 Hopf structure in the classical types
Let (A, T ) be a c-cluster pair consisting of an acyclic cluster seed A and any cluster T obtained from A
by mutations. The multiplication of c-clusters is given by disjoint union, and the comultiplication is:

∆ ((A, T )) :=
∑
U⊂T

(AU , TU )⊗ (ATrU , TTrU )

where AU and TU denote the restrictions of A and T to U . The restriction TU of T is simply equal to the
restricted cluster U . The restriction AU of A is not as clear since U is not a subset of A, and turns out
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to be much more interesting. Denote by U the closure set of all cluster variables that can be obtained by
mutating elements of U in the cluster T (excluding those in T r U ). To obtain AU from A we proceed
with the following rotation process: first take all the elements of A that belong to the closure U . Then, we
consecutively rotate A and take all its elements that belong to U and are compatible with all previously
taken elements. The process finishes when we have taken as many elements as the cardinality of U .
Theorem 4.2 guaranties that this process indeed finishes, and moreover, that it produces a cluster that is
acyclic (corresponding to a Coxeter element cF ). In typeAn, clusters can be represented by triangulations
of a convex (n+ 3)-gon. The restriction of a c-cluster and the rotation process is illustrated in Figure 6.

Fig. 6: Restriction of a c-cluster of typeA and rotation process restricting the cluster seed. The other types are similar.
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thank the Banting Postdoctoral Fellowships program of the government of Canada and York University
for their support on this project.

References
[1] Marcelo Aguiar, Nantel Bergeron, and Frank Sottile. Combinatorial hopf algebras and generalized

dehn-sommerville relations. Compositio Math., 142:1–30, 2006.

[2] Carolina Benedetti and Bruce Sagan. Antipodes and involutions. Preprint, arXiv:1410.5023, 2014.

[3] Nantel Bergeron, Cesar Ceballos, and Jean-Philippe Labbé. Fan realizations of type a subword
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[15] Allen Knutson and Ezra Miller. Gröbner geometry of Schubert polynomials. Ann. Math.,
161(3):1245–1318, 2005.

[16] Folkert Müller-Hoissen, Jean Marcel Pallo, and Jim Stasheff, editors. Associahedra, Tamari Lat-
tices and Related Structures. Tamari Memorial Festschrift, volume 299 of Progress in Mathematics.
Springer, New York, 2012.

[17] Vincent Pilaud and Michel Pocchiola. Multitriangulations, pseudotriangulations and primitive sort-
ing networks. Discrete Comput. Geom., 48(1):142–191, 2012.

[18] Vincent Pilaud and Francisco Santos. The brick polytope of a sorting network. European J. Combin.,
33(4):632–662, 2012.

[19] Vincent Pilaud and Christian Stump. Brick polytopes of spherical subword complexes and general-
ized associahedra. 1–61, 2015. Adv. Math., 276:1–61, 2015.

[20] Nathan Reading. Clusters, Coxeter-sortable elements and noncrossing partitions. Trans. Amer. Math.
Soc., 359(12):5931–5958, 2007.

[21] Günter Rote, Francisco Santos, and Ileana Streinu. Expansive motions and the polytope of pointed
pseudo-triangulations. In B. Aronov, S. Basu, J. Pach, and M. Sharir, editors, Discrete and Com-
putational Geometry, The Goodman-Pollack Festschrift, volume 25 of Algorithms Combin., pages
699–736. Springer, Berlin, 2003.

[22] Salvatore Stella. Polyhedral models for generalized associahedra via coxeter elements. Journal of
Algebraic Combinatorics, pages 1–38, 2012.

[23] Christian Stump, Hugh Thomas, and Nathan Williams. Cataland: Why the Fuss? Preprint,
arXiv:1503.00710, 2015.

http://arxiv.org/abs/1503.00710

	Introduction
	Subword Complexes
	Root function and flats
	Decomposition theorem of subword complexes

	A Hopf algebra of subword complexes
	Comultiplication 2mu-:6muplus1muYYY and counit 2mu-:6muplus1muYk.
	Multiplication m2mu-:6muplus1muYYY and unit u2mu-:6muplus1mukY.
	Hopf structure and antipode.

	Hopf algebra of c-clusters of finite type
	c-clusters
	Hopf structure in the classical types


