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Tropical Ideals
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Abstract. We introduce and study a special class of ideals over the semiring of tropical polynomials, which we call
tropical ideals, with the goal of developing a useful and solid algebraic foundation for tropical geometry. We explore
their rich combinatorial structure, and prove that they satisfy numerous properties analogous to classical ideals.

Résumé. Nous introduisons et étudions une classe particulière d’idéals sur le demi-anneau des polynômes tropi-
caux, que nous appelons idéals tropicaux, dans la perspective de développer des fondations solides et utiles pour la
géométrie tropicale. Nous explorons leur riche structure combinatoire, et nous prouvons qu’ils satisfont de nom-
breuses propriétés analogues à celles des idéaux classiques.

Keywords. tropical geometry, matroid, valuated matroid, tropical variety, Hilbert function, Gröbner complex, Null-
stellensatz

1 Introduction
Tropical algebraic geometry is a piecewise linear shadow of algebraic geometry, in which varieties are
replaced by certain polyhedral complexes that can be studied combinatorially. This area has grown signif-
icantly in the past decade and has had great success in numerous applications, like Mikhalkin’s calculation
of Gromov-Witten invariants of P2 [Mik05].

One current limitation of the theory, however, is that almost all techniques developed to date are fo-
cused on tropical varieties and tropical cycles, as opposed to schemes or more general spaces. Many of
the standard algebraic tools of modern algebraic geometry thus do not yet have a tropical counterpart.
These include elementary parts of algebraic geometry, such as uniqueness of irreducible decomposition.
For instance, Figure 1 illustrates a tropical variety that admits two different “tropical irreducible decom-
positions”. The current tools of tropical geometry do not allow us to distinguish between these two cases.

In [GG], Jeff and Noah Giansiracusa described a way of tropicalizing a subscheme of a toric variety
using certain quotients of the semiring of tropical polynomials. The authors of this paper developed
this further in [MR], clarifying to a greater extent the connection to tropical linear spaces and valuated
matroids.

In this paper we generalize this point of view and study tropical ideals, which are ideals over the
semiring of tropical polynomials whose homogeneous parts are ‘matroidal’. Tropical ideals have a deep
and interesting combinatorial structure, and we believe that they deserve a lot more study.
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We denote by R the tropical semiring R∪ {∞} with the operations tropical sum ⊕ = min and tropical
multiplication ◦· = +. The semiring of tropical polynomials R[x] = R[x0, . . . , xn] consists of polynomi-
als with coefficients in R where all operations are tropical. For simplicity, we describe our results in the
fundamental case of homogeneous ideals. A more extensive treatment can be found in Section 2.

= U U U=

Fig. 1: Two tropical irreducible decompositions.

Definition 1.1 A homogeneous ideal J ⊂ R[x] is a tropical ideal if for each degree d ≥ 0 its homoge-
neous part Jd is the set of vectors of a valuated matroid, or equivalently, Jd is a tropical linear space.
Concretely, J is a tropical ideal if it satisfies the following “monomial elimination axiom”:
• For any f, g ∈ Jd and any degree-d monomial xu for which [f ]xu = [g]xu 6= ∞, there exists
h ∈ Jd such that [h]xu =∞ and [h]xv ≥ min([f ]xv , [g]xv) for any degree-d monomial xv, with the
equality holding whenever [f ]xv 6= [g]xv .

Here we use the notation [f ]xu to denote the coefficient of the monomial xu in the tropical polynomial f .

If K is a field equipped with a non-archimedean valuation, any classical polynomial f ∈ K[x] gives
rise to a tropical polynomial trop(f) ∈ R[x] by interpreting all operations tropically and replacing all
coefficients by their valuation. If I ⊂ K[x] is a classical homogeneous ideal then the ideal

trop(I) := 〈trop(f) | f ∈ I〉 ⊂ R[x]

is a homogeneous tropical ideal in R[x]. However, the class of tropical ideals is larger: we exhibit in
Example 2.4 a tropical ideal that cannot be realized as trop(I) for any ideal I ⊂ K[x] over any field K.

As we describe below, the “monomial elimination axiom” required for tropical ideals makes up for
the lack of additive inverses in the tropical semiring, and gives tropical ideals a rich algebraic structure
reminiscent of classical ideals. In particular, tropical ideals seem to reflect the underlying geometry much
better than general ideals of R[x]; see Example 2.6.

Given any tropical polynomial f ∈ R[x], its corresponding hypersurface is defined as

V (f) := {w ∈ Rn+1
: the minimum in f(w) is achieved at least twice}.

For any ideal J ⊂ R[x], its corresponding variety is

V (J) :=
⋂
f∈J

V (f).

If J is an arbitrary ideal in R[x] then V (J) can be a fairly arbitrary subset of Rn+1
; see Example 4.1. In

particular, V (J) might not even be polyhedral. However, if J is a tropical ideal, one of our main results
shows that this is not the case:
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Theorem 1.2 If J ⊂ R[x] is a tropical ideal then the variety V (J) in Rn+1 is a finite polyhedral complex.

Our proof of Theorem 1.2 generalizes the case where J = trop(I) for a classical ideal I: we develop
a Gröbner theory for tropical ideals, and show that any tropical ideal has a finite R-rational Gröbner
complex, as in [MS15, §2.5]. The variety of J is then a subcomplex of its Gröbner complex.

A tropical basis for a tropical ideal J is a collection of polynomials in J that cut out the variety V (J).
Even though tropical ideals are generally not finitely generated, we show in Theorem 4.5 that they all
admit a finite tropical basis.

We also investigate more algebraically flavored properties of tropical ideals. The fact that homogeneous
parts of tropical ideals are tropical linear spaces allows us to naturally define the Hilbert function of any
homogeneous tropical ideal. In the case where J = trop(I) for a classical ideal I , the Hilbert function
of J agrees with the Hilbert function of I . In Corollary 3.8 we show that, just as in the classical case, the
Hilbert function of any tropical ideal is eventually polynomial.

The semiring R[x] is not Noetherian, and tropical ideals are almost never finitely generated. Exam-
ple 3.11 gives an infinite family of distinct tropical ideals {Jj}j≥1, all of them having the same Hilbert
function, such that for any d ≥ 0, if k, l ≥ d then the tropical ideals Jk and J l agree on all their homoge-
neous parts of degree at most d. However, we show that tropical ideals do satisfy the following Noetherian
property.

Theorem 1.3 (Ascending chain condition.) There is no infinite ascending chain J1 ( J2 ( J3 ( · · · of
tropical ideals.

There are several versions of the Nullstellensatz for tropical geometry that can be found in the literature.
Most of these results are about arbitrary finitely generated ideals in R[x]. In our case, the rich structure
we impose on tropical ideals allows us to use the results in [GP] to get the following elegant formulation.

Theorem 1.4 (Tropical Nullstellensatz.) If J ⊂ R[x] is a tropical ideal then the variety V (J) ∩ Rn+1 in
the tropical torus is empty if and only if J contains a monomial.

Since all of our arguments for tropical ideals are of combinatorial nature, our approach has the appealing
feature of providing completely combinatorial proofs for some well-known statements, like the existence
of a (finite) Gröbner complex for any ideal I ⊂ K[x], Theorem 1.2 for ideals of the form trop(I) with
I ⊂ K[x], and the classical version of Theorem 1.4.

2 Tropical Ideals
In this section we give the definition of tropical ideals, together with several examples. For this purpose,
we first recall some of the basics of valuated matroids.

Throughout this paper we denote by R the tropical semiring (or min-plus algebra)

R := (R ∪ {∞},⊕, ◦· ), where ⊕ := min and ◦· := +.

We denote by
R[x] = R[x0, . . . , xn]

the semiring of tropical polynomials in the variables x = (x0, . . . , xn). We write tropical monomials
using the same notation as for classical monomials; for instance, we write x2y3 for the tropical monomial
x◦· x◦· y◦· y◦· y. Elements of R[x] are polynomials with coefficients in R where all operations are to be
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interpreted tropically. Explicitly, if f ∈ R[x] then f has the form f(x) =
⊕

u∈Nn+1(au ◦· xu), where
au ∈ R and all but finitely many of the au equal∞. Note that elements of R[x] are regarded as tropical
polynomials and not functions; for example, the tropical polynomials f(x) = x2 ⊕ 0 and g(x) = x2 ⊕
1◦· x ⊕ 0 are distinct, even though f(w) = g(w) for all w ∈ R. The support of a tropical polynomial
f =

⊕
au ◦· xu is

supp(f) := {u ∈ Nn+1 : au 6=∞}.
We call au the coefficient in f of the monomial xu.

Valuated matroids are a generalization of the notion of matroids, introduced by Dress and Wenzel in
[DW92]. In the tropical literature they are also known by the name of tropical Plücker vectors [SS04]. We
now recall some of the necessary background on valuated matroids and tropical linear spaces; for basics
of standard matroids, see, for example, [Oxl92].

Let E be a finite set, and let r ∈ N. Denote by
(
E
r

)
the collection of subsets of E of size r. A valuated

matroid on the ground set E is a pairM = (E, p) where p :
(
E
r

)
→ R satisfies the following properties:

• There exists B ∈
(
E
r

)
such that p(B) 6=∞.

• Tropical Plücker relations: For every A,B ∈
(
E
r

)
and every a ∈ A \B there exists b ∈ B \A with

p(A) + p(B) ≥ p(A ∪ b− a) + p(B ∪ a− b).

This version of the tropical Plücker relations can be easily seen to be equivalent to their more standard
formulation used in the tropical literature (see, for example, [MS15, §4.4]). IfM = (E, p) is a valuated
matroid, its support

supp(p) := {B ∈
(
E
r

)
: p(B) 6=∞}

is the collection of bases of a rank r matroid on the ground set E, called the underlying matroidM ofM.
The function p is called the basis valuation function ofM.

Just as ordinary matroids, valuated matroids have several different “cryptomorphic” definitions, some
of which we now recall. For more information see [MT01].

LetM be a valuated matroid on the ground set E with basis valuation function p :
(
E
r

)
→ R. Given a

basis B ofM and an element e ∈ E \ B, the (valuated) fundamental circuit H(B, e) ofM is the vector
in RE defined by

H(B, e)f := p(B ∪ e− f)− p(B) ∈ R for any f ∈ E,

where we follow the convention that p(B′) =∞ if |B′| > r, and∞−a =∞ for any a ∈ R. A (valuated)
circuit ofM is any vector in RE of the form λ◦·H(B, e), whereB is a basis ofM, e ∈ E \B, and λ ∈ R.
We denote by C(M) the collection of all circuits ofM. For any H ∈ RE , its support is defined as

supp(H) := {e ∈ E : He 6=∞}.

The set of supports of the circuits of M is equal to the set of circuits of the underlying matroid M.
Furthermore, if two circuits G and H of M have the same support then there exists λ ∈ R such that
G = λ◦·H .

Collections of circuits of valuated matroids can be intrinsically characterized by a few axioms that
generalize the classical circuit axioms for matroids (see [MT01]). The most important one of them is the
following valuated elimination property.
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• Circuit elimination axiom: For any G,H ∈ C(M) and any e, f ∈ E such that Ge = He 6=∞ and
Gf < Hf , there exists F ∈ C(M) satisfying Fe =∞, Ff = Gf , and F ≥ G ⊕ H .

Here we follow the convention that F ≥ G if and only if Fe ≥ Ge for all e.
A cycle of a classical matroid is a union of circuits. Its valuated counterpart is called a vector, which is

defined as any point in the tropical convex hull of the valuated circuits. More explicitly, the set V(M) of
vectors ofM is equal to {

⊕
F∈C(M) λF ◦· F : λF ∈ R for all F}. Vectors can also be characterized by

just a few axioms, of which the following one is the most important.

• Vector elimination axiom: For any G,H ∈ V(M) and any e ∈ E such that Ge = He 6= ∞, there
exists F ∈ V(M) satisfying Fe = ∞, F ≥ G ⊕ H , and Ff = Gf ⊕ Hf for all f ∈ E such that
Gf 6= Hf .

The set of vectors of a valuated matroid is called a tropical linear space in the tropical literature. In the
terminology used in [MS15, §4.4], if p is the basis valuation function of a valuated matroidM then V(M)
is the tropical linear space Lp⊥ , where p⊥ is the dual tropical Plücker vector p⊥(B) := p(E\B). Tropical
linear spaces are pure dimensional polyhedral complexes in RE , of dimension equal to dim(V(M)) =
|E| − r(M) (see [Spe08]).

We now introduce the main object of study of our paper. Let Mond be the set of monomials of degree
d in the variables x = (x0, . . . , xn). We will identify elements of RMond with homogeneous tropical
polynomials of degree d. In this way, ifM is a valuated matroid on the ground set Mond, circuits and
vectors ofM can be thought of as tropical polynomials in R[x]d.

Definition 2.1 (Homogeneous tropical ideals.) A homogeneous ideal I ⊂ R[x] is a tropical ideal if for
each d ≥ 0 its degree-d part Id is the collection of vectors of a valuated matroidMd on Mond, i.e., it is
a tropical linear space in RMond . Equivalently, I is a homogeneous tropical ideal if it can be written as
a direct sum I =

⊕
d≥0 V(Md) for some sequence of valuated matroids (Md)d≥0, where the ground set

ofMd is Mond.
If I is a homogeneous tropical ideal, we will denote by Md(I) the valuated matroid such that Id =
V(Md(I)).

This definition agrees with Definition 1.1 in the introduction, since the axioms for vectors other than
the vector elimination axiom are automatically satisfied by the homogeneous parts of any ideal I ⊂ R[x]
(see [MT01]).

Not every homogeneous ideal in R[x] is a tropical ideal. As an example, consider the ideal I in R[x, y]
generated by x ⊕ y. The degree-two part of this ideal is the R-semimodule generated by x2 ⊕ xy, and
xy ⊕ y2. This is not the set of vectors of a valuated matroid on Mon2 = {x2, xy, y2}, as its elements do
not satisfy the vector elimination axiom: the polynomial x2 ⊕ y2 would be required in I by the vector
elimination axiom applied to the two generators.

Example 2.2 (Realizable tropical ideals.) Let K be a field with a valuation map val : K → R. Any
polynomial f ∈ K[x] gives rise to a tropical polynomial trop(f) ∈ R[x] by interpreting all operations
tropically and replacing any coefficients by their valuation; i.e., if f =

∑
cu · xu, then trop(f) :=⊕

val(cu)◦· xu. If J ⊂ K[x] is any homogeneous ideal then the ideal

trop(J) := 〈trop(f) | f ∈ J〉 ⊂ R[x]
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is a homogeneous tropical ideal. A tropical ideal arising in this way is called realizable (over the field
K).

A special class of realizable homogeneous tropical ideals consists of the tropical equivalent of the
homogeneous ideal of a point in projective space. In Example 4.7 we will see that these are precisely the
maximal homogeneous tropical ideals of R[x].

Example 2.3 (The homogeneous ideal of a point.) Fix a = (a0, a1, . . . , an) ∈ Rn+1
with a 6= (∞)n+1.

Let Ja be the ideal generated by all homogeneous polynomials f ∈ R[x0, . . . , xn] for which the minimum
in f(a) is achieved at least twice. We claim that Ja is a tropical ideal. In addition, if K is a valued field
with ai ∈ im val for all 0 ≤ i ≤ n, then Ja is the tropicalization of any ideal Jα of a point α ∈ Pn with
val(αi) = ai.

To prove the first claim, one can show that Ja is generated by the binomials of the form (a · v)◦· xu ⊕
(a · u)◦· xv with deg(xu) = deg(xv), which satisfy the valuated circuit elimination axiom. We omit the
details.

Suppose now that α ∈ Pn satisfies val(α) = a. The homogeneous ideal Jα ⊂ K[x0, . . . , xn] of
the point α contains the binomials αvxu − αuxv for all pairs xu,xv with deg(xu) = deg(xv), thus
Ja ⊆ trop(Jα). If the inclusion were proper, there would be h ∈ Jα with trop(h) /∈ Ja. This would
contradict the fact that α ∈ V (h), as a = val(α) ∈ trop(V (h)) = V (trop(h)).

We now present a tropical ideal that is not realizable over any field K.

Example 2.4 (A non-realizable tropical ideal.) For any n ≥ 2, we give an example of a homogeneous
tropical ideal in R[x0, . . . , xn] that is not realizable over any field. Its underlying variety is, however, the
standard tropical line in tropical projective space TPn.

For d ≥ 0, letMd be the rank d + 1 valuated matroid on the ground set Mond whose basis valuation
function pd :

(
Mond
d+1

)
→ R is given by

pd(B) :=


0 if for any k ≤ d and any xv ∈ Monk we have

|{xu ∈ B | xv divides xu}| ≤ d− k + 1,

∞ otherwise.

Geometrically, if we think of Mond as the set of lattice points inside a simplex of size d, the function pd
assigns the value 0 precisely to those (d + 1)-subsets B of Mond such that for any k ≤ d, the subset
B contains at most d − k + 1 monomials from any simplex in Mond of size d − k. The fact that pd is
indeed the basis valuation function of a valuated matroid follows from [AB07, Theorem 4.1], where the
corresponding underlying matroid is studied in detail.

The circuits ofMd are the tropical polynomials of the form H = λ◦·
⊕

u∈C xu with λ ∈ R and C a
minimal subset of Mond satisfying |C| > d−deg(gcd(C))+1. From this description it is clear that ifH is
a circuit ofMd and xi is any variable then xi ◦·H is a circuit ofMd+1. It follows that I =

⊕
d≥0 V(Md)

is a tropical ideal.
To show that I is a non-realizable tropical ideal, note that the tropical polynomial F = x0 ⊕ x1 ⊕ x2

is a circuit of M1, and in particular F ∈ I . If I is realizable, say I = trop(J) for some ideal J ⊂
K[x0, . . . , xn], then there exists some f ∈ J such that F = trop(f). After a suitable scaling of the
variables, we can assume that f = x0 + x1 + x2. The polynomial

g := f · (x20 + x21 + x22 − x0x1 − x0x2 − x1x2) = x30 + x31 + x32 − 3x0x1x2
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is then a polynomial in J , and thus G := trop(g) ∈ I . However, this contradicts the fact that supp(G) ⊂
{x30, x31, x32, x0x1x2} is an independent set in the underlying matroidM3.

We now extend the definition of tropical ideals to cover non-homogeneous ideals.

Definition 2.5 (Non-homogeneous tropical ideals.) The homogenization of a polynomial f =
⊕
au ◦· xu

in R[x1, . . . , xn] is
f̃ =

⊕
au ◦· xd−|u|0 ◦· xu ∈ R[x0, x1, . . . , xn],

where |u| :=
∑n
i=1 ui and d := maxau 6=∞ |u|. The homogenization of an ideal I ⊂ R[x1, . . . , xn] is the

homogeneous ideal Ĩ := 〈f̃ : f ∈ I〉 ⊂ R[x0, x1, . . . , xn].
An ideal I ⊂ R[x1, . . . , xn] is a tropical ideal if its homogenization is a tropical ideal in R[x0, . . . , xn].

An ideal J ⊂ R[x] is prime if f ◦· g ∈ J implies f ∈ J or g ∈ J . Even in the semiring R[x] of tropical
polynomials in one variable, one can find uncountable chains of nested prime ideals (see [GG, Example
3.4]). However, considering only tropical prime ideals of R[x] seems to reflect the underlying geometry
much better: if we restrict ourselves only to tropical prime ideals then the Krull dimension of R[x] is 1,
as explained below.

Example 2.6 (Tropical prime ideals of R[x].) We classify all tropical prime ideals in the semiring R[x]
of tropical polynomials in one variable. For any a ∈ R, let Ja be the ideal consisting of all tropical
polynomials F whose bend locus V (F ) contains a. The polynomials of minimal support in Ja are (up to
scaling) the binomials xi ⊕ ai−j ◦· xj with i > j, and any polynomial in Ja is a tropical sum of them.
Since these binomials satisfy the circuit elimination axiom for valuated matroids, Ja is a tropical ideal.
Moreover, the fact that any two tropical polynomials F,G satisfy V (F ◦·G) = V (F )∪ V (G) implies that
Ja is a tropical prime ideal. We will prove that, in fact, these are the only proper tropical prime ideals in
R[x], together with the “zero ideal” 〈∞〉.

We say that a tropical polynomial F (x) =
⊕d

i=0 ci ◦· xi is convex if its coefficients form a convex
sequence, that is, ci ≤ 1

2 (ci−1 + ci+1) for all 0 < i < d. The product of two convex tropical polynomials
is also convex. We will first show that any non-zero ideal J in R[x] contains a convex polynomial. For this
purpose, suppose G ∈ J with G 6=∞, and let Ĝ be its convexification: the coefficient ĉi of the monomial
xi in Ĝ is the smallest number in R such that G(b) = Ĝ(b) for all b ∈ R. Note that the polynomial Ĝ is
indeed convex. One can prove that G◦· Ĝ = Ĝ◦· Ĝ. Since Ĝ◦· Ĝ is a product of convex polynomials, it is
also convex. The polynomial G◦· Ĝ is thus a convex polynomial in the ideal J .

Now, if J is a non-zero tropical prime ideal in R[x], we have shown that J contains a convex polynomial
F . It is a well-known fact that convex polynomials in R[x] factor into linear factors. Since J is prime,
J must contain one of these linear factors, say (x ⊕ a) ∈ J , with a ∈ R. Multiplying by powers of
x, we see that J must contain all polynomials of the form xi ⊕ a◦· xi−1. Furthermore, the monomial
elimination axiom for tropical ideals forces J to contain all binomials xi ⊕ ai−j ◦· xj with i > j. Since
these binomials generate the ideal Ja, we see that J must contain the whole ideal Ja. If J were strictly
greater than Ja, it would contain a polynomial F ′ with V (F ′) 63 a. Repeating a similar argument, J
would contain the convex polynomial F̂ ′ ◦· F̂ ′, which has the same tropical roots as F ′ (with double the
multiplicity). Since J is prime, J would also contain one of its linear factors, say (x ⊕ a′) ∈ J , with
a′ 6= a. But then, the monomial elimination axiom applied to x ⊕ a and x ⊕ a′ forces J to contain the
constant min(a, a′), which implies that J is the unit ideal.
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3 Gröbner theory for tropical ideals
In this section we develop a Gröbner theory for tropical ideals in R[x] and use it to prove some basic
properties of tropical ideals. These include the eventual polynomiality of their Hilbert functions, and the
fact that tropical ideals satisfy the ascending chain condition.

We denote by B the Boolean subsemiring of R

B := ({0,∞},⊕, ◦· ).

Initial ideals of tropical ideals in R[x] will be tropical ideals in the semiring of tropical polynomials B[x],
as we define below. We will sometimes identify subsets of Mond with homogeneous tropical polynomials
in B[x] of degree d, via the correspondence that takes any S ⊂ Mond to

⊕
u∈S x

u ∈ B[x]. In this way, if
M is an (ordinary) matroid on the ground set Mond, circuits and cycles (i.e., unions of circuits) of M can
be thought of as tropical polynomials in B[x]d.

Definition 3.1 A homogeneous ideal I ⊂ B[x] is a tropical ideal if for each d ≥ 0 its degree-d part Id is
the collection of cycles (i.e., unions of circuits) of an ordinary matroid on Mond. If I ⊂ B[x] is a tropical
ideal, we will denote by Md(I) the matroid on Mond such that Id is the collection of cycles of Md(I).

We now define initial terms of tropical polynomials, although in a slightly more general context that
will be useful later. If E is any finite set, H ∈ RE , and w ∈ RE , we let

inwH := {a ∈ E : Ha + wa is minimal among all a ∈ E}

be the w-initial term of H . By taking E = Mond, this defines initial terms for tropical polynomials in
R[x] and thus in B[x]. Note that the w-initial term of a tropical polynomial is a collection of monomials,
and thus it can be thought of as a polynomial in B[x].

Definition 3.2 (Initial ideals.) Let I be a homogeneous ideal in R[x], and let w ∈ Rn+1. The initial ideal
inw I is the homogeneous ideal in B[x] whose homogeneous parts are

(inw I)d := {inwd F | F ∈ Id},

where wd : Mond → R is defined as wd(x
u) :=

∑n
i=1 uiwi. The fact that inw I is an ideal in B[x]

follows easily from the fact that I is an ideal in R[x]. If I is an ideal in B[x], we define its initial ideal
inw I to be equal to inw I

′, where I ′ is the ideal generated by I in R[x] under the natural inclusion
B[x] ↪→ R[x].

Our definition of initial ideals is compatible with the usual definition of initial ideals used in tropical
geometry, in the sense that for any homogeneous ideal J ⊂ K[x] we have trop(inw J) = inw trop(J).

Our main result in this section will show that initial ideals of tropical ideals are also tropical ideals,
which follows from the following key fact about valuated matroids. We omit its proof.

Lemma 3.3 LetM = (E, p) be a rank r valuated matroid, and let w = (we)e∈E ∈ RE . Then

inw B(M) :=
{
B ∈

(
E
r

)
: p(B)−

∑
e∈B we is minimal among all B ∈

(
E
r

)}
is the collection of bases of an (ordinary) matroid inwM of rank r on the ground set E. Its circuits are
the minimal elements in the set inw C(M) := {inwH ⊂ E : H ∈ C(M)}, and its set of cycles (i.e.,
unions of circuits) is

inw V(M) := {inwH ⊂ E : H ∈ V(M)}.
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Lemma 3.3 implies the following description of initial tropical ideals.

Theorem 3.4 Let I be a homogeneous tropical ideal in R[x], and let w ∈ Rn+1. Then the initial ideal
inw I is a tropical ideal in B[x], with associated matroids Md(inw I) = inwMd(I).

Homogeneous tropical ideals have a well-defined Hilbert function.

Definition 3.5 (Hilbert functions.) If I ⊂ R[x] is a homogeneous tropical ideal, its Hilbert function is
the function HI : Z≥0 → Z≥0 defined by

HI(d) := rank ofMd(I).

Similarly, the Hilbert function of a tropical ideal I ⊂ B[x] is the function HI : Z≥0 → Z≥0 defined by
HI(d) := rank of Md(I).

Since tropicalization preserves dimensions of linear spaces, Hilbert functions are preserved under trop-
icalization: If J ⊂ K[x] is any homogeneous ideal then

Htrop(J)(d) = dimK((K[x]/J)d)

for any d ∈ Z≥0.
Lemma 3.3 and Theorem 3.4 imply the following result.

Proposition 3.6 Let I be a homogeneous tropical ideal in R[x] or B[x], and let w ∈ Rn+1. Then for any
d ∈ Z≥0 we have HI(d) = Hinw I(d).

The following result will be useful in our study of tropical ideals.

Proposition 3.7 If I is a homogeneous tropical ideal in R[x] or B[x] then there exists w ∈ Rn+1 such that
inw(I) is generated by monomials. In fact, the set of w for which inw(I) is not generated by monomials
has measure zero in Rn+1.

As an immediate application, we have the following result about Hilbert functions of tropical ideals.

Corollary 3.8 (Hilbert polynomial.) If I is a homogeneous tropical ideal in R[x] or B[x], then its Hilbert
function HI is eventually polynomial.

Proof: Using Proposition 3.7 and Proposition 3.6, we can reduce to the case that I is a tropical ideal in
B[x] generated by monomials. In this case, the set of monomials in I determine its Hilbert function in the
same way they do for classical ideals in K[x]. The result then follows from the classical case. 2

The following example shows that tropical ideals are typically not finitely generated. Nonetheless, we
show that tropical ideals satisfy the ascending chain condition.

Example 3.9 (Tropical ideals are not finitely generated.) Let J = 〈x − y〉 ⊆ K[x, y], and let I =
trop(J) ⊆ R[x, y]. Note that xd − yd ∈ J for all d ≥ 1, so xd ⊕ yd ∈ I for all d ≥ 1. Suppose that
F1, . . . , Fr is a finite generating set for I . Then for all d ≥ 1 we can write xd ⊕ yd =

⊕
Hid ◦· Fi. Since

there is no cancellation in R[x, y], if m is a monomial occurring in Hid for some d, and m′ is a monomial
occurring in Fi, then mm′ occurs in Hid ◦· Fi, and thus in xd ⊕ yd. This is only possible if each Fi is
either xd ⊕ yd or a power of x or y. Since there are only finitely many Fi, it follows that R[x, y]d = Id
for d � 0, and so the Hilbert function of I equals zero for d � 0. This contradicts the fact that the
Hilbert functions of I and J agree, thus we conclude that I is not finitely generated.
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Proposition 3.10 (Ascending chain condition.) If I, J are homogeneous tropical ideals in R[x] with
I ⊆ J and identical Hilbert functions then I = J . Furthermore, there is no infinite ascending chain
I1 ( I2 ( I3 ( · · · of homogeneous tropical ideals.

Proof: Suppose I ⊆ J are tropical ideals with the same Hilbert function. Then, for any degree d, we have
an inclusion Id ⊆ Jd of tropical linear spaces of the same dimension. By [Rin12, Lemma 7.4], any such
inclusion has to be an equality, thus Id = Jd for all d, and I = J .

Now, suppose that I1 ( I2 ( I3 ( · · · is an infinite ascending chain of tropical ideals. By Proposition
3.7, we can choose a w ∈ Rn+1 such that inw Ij is generated by monomials for all j. The chain inw I1 ⊆
inw I2 ⊆ inw I3 ⊆ . . . is then an ascending chain of monomial ideals, so by the classical theory it has
to stabilize. Since inw Ij and Ij have the same Hilbert functions, it follows that for large enough j the
Hilbert functions of the tropical ideals Ij are all equal, which leads to a contradiction. 2

Example 3.11 (Tropical ideals are not determined in low degree.) We present an infinite family of ho-
mogeneous tropical ideals (J ′m)m>0 in R[x, y, z, w], all of them having the same Hilbert function, such
that for any d ≥ 0, if k, l ≥ d then the tropical ideals J ′k and J ′l agree on all their homogeneous parts of
degree at most d, i.e., (J ′k)i = (J ′l )i for all i ≤ d. This implies that there is no bound D depending only
on the Hilbert function of a tropical ideal I for which the homogeneous parts (Ii)i≤D of degree at most
D determine the whole tropical ideal I .

For any real number λ > 0, consider the classical ideal Iλ = 〈x− z−w, y− z−λw〉 in C[x, y, z, w],
and let Jλ := trop(Iλ). The Hilbert function of Iλ is the same as the one of Jλ, which gives HJλ(d) =
d+ 1. We claim that the tropical polynomial

F := xn ⊕ y◦· zn−1 ⊕ zn−2 ◦· w2 ⊕ zn−3 ◦· w3 ⊕ · · · ⊕ z ◦· wn−1 ⊕ wn

is in the tropical ideal Jλ if and only if λ = n. To prove our claim, note that xn − (z + w)n ∈ Iλ, since
x− (z + w) ∈ Iλ. Thus the polynomial

f := xn − (z + w)n − zn−1(y − z − λw)

= xn − zn−1y − (n− λ)zn−1w −
(
n

2

)
zn−2w2 − · · · −

(
n

n− 1

)
zwn−1 − wn

is also in Iλ. If λ = n then trop(f) = F , and so F ∈ Jλ. We omit the reverse implication due to space
constraints. A similar analysis can be used to show that for any degree d ≥ 0, the degree-d part of the
tropical ideals Iλ are all equal except for finitely many values of λ. We call this the ‘generic homogeneous
part’.

We define our family of tropical ideals (J ′m)m>0 inductively as follows. Let N0 = 1, and suppose we
have defined the tropical ideals J ′k for all k < m. Define J ′m := JNm , where Nm is a large enough
integer such that for any degree d ≤ Nm−1, the degree-d part of JNm is the generic homogeneous part.
Such an Nm exists according to our discussion above. Since the matroid MNm(JNm) is not generic, it
follows that Nm > Nm−1, and moreover, all the tropical ideals JNm defined in this way must be distinct.
Also, by induction, we must haveNm−1 ≥ m. We conclude that the family (J ′m)m>0 satisfies the required
conditions: For any d > 0, if k, l ≥ d then the homogeneous parts of J ′k = JNk and J ′l = JNl of degree
at most d are generic, since Nk−1 and Nl−1 are both greater than d.
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4 Gröbner complex for tropical ideals
In this section we define and study the Gröbner complex of a tropical ideal, and use it to show that the
underlying variety of any tropical ideal is always the support of a finite polyhedral complex. We start with
an example that shows that this is not the case for arbitrary ideals of R[x].

Example 4.1 Let {Fα}α∈A be an arbitrary collection of tropical polynomials in R[x], and consider the
ideal I = 〈Fα〉α∈A in R[x] that they generate. Its variety V (I) in Rn+1

satisfies V (I) =
⋂
α∈A V (Fα).

This shows that any tropical prevariety can be the underlying set of points of an ideal in R[x]. Moreover,
note that any rational half-hyperplane in Rn+1 is a tropical prevariety (a fact that we learned from Paolo
Tripoli): If H ⊂ Rn+1 is the half-hyperplane given by a · x = c and b · x ≥ d, with a,b ∈ Zn+1 and
c, d ∈ R, then

H = V (xa ⊕ c) ∩ V (xb ⊕ (d− c)◦· xa ⊕ d)

(where we might need to clear denominators if some of the entries of a and b are negative). If follows
that any rational polyhedron in Rn+1 of dimension at most n is a tropical prevariety. By intersecting an
infinite collection of polyhedra that cut out a non-polyhedral set, we see that the underlying set of points
of an arbitrary ideal in R[x] need not even be polyhedral.

The proof of the following theorem is mainly based on the ideas developed in Section 3, but we omit
details due to space constraints.

Theorem 4.2 (Gröbner complex.) Let I ⊂ R[x] be a homogeneous tropical ideal. There is a finite R-
rational polyhedral complex Σ(I) ⊂ Rn+1, whose support is all Rn+1, such that w and w′ lie in the
same cell of Σ(I) if and only if inw(I) = inw′(I). The polyhedral complex Σ(I) is called the Gröbner
complex of I .

We can now state the main result of this section.

Corollary 4.3 If I ⊂ R[x] is a tropical ideal, its underlying variety V (I) is the support of a finite
polyhedral complex.

Proof: The underlying variety V (I) is the set of vectors w for which inw I contains no monomial, thus
V (I) is the union of the cells of the Gröbner complex Σ(I) that correspond to monomial-free initial ideals
of I . 2

The study of the structure of varieties defined by prime tropical ideals is currently work in progress. In
particular, it is unclear if, just as in the realizable case, they are pure and balanced polyhedral complexes.

Definition 4.4 (Tropical bases.) Let I ⊂ R[x] be a tropical ideal. We say that the tropical polynomials
F1, F2, . . . , Fl ∈ I form a tropical basis for I if they cut out the underlying variety V (I), i.e.,

V (I) = V (F1) ∩ V (F2) ∩ · · · ∩ V (Fl).

The fact that the Gröbner complex is a finite polyhedral complex implies that (finite) tropical bases
always exist.

Theorem 4.5 Any tropical ideal I ⊂ R[x] has a finite tropical basis.

Tropical ideals satisfy the following versions of the Nullstellensatz, which are completely analogous to
their classical counterparts.
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Theorem 4.6 (Tropical Nullstellensatz.) Let I ⊂ R[x1, . . . , xn] be a tropical ideal.

(a) The variety V (I) ∩ Rn in the tropical torus is empty if and only if I contains a monomial.

(b) The variety V (I) ⊂ Rn is empty if and only if I is the unit ideal 〈0〉.

(c) If I is homogeneous, the variety V (I) ⊂ Rn contains no point other than−→∞ if and only if I contains
all monomials of degree at least d, for some d ≥ 0.

The Nullstellensatz allows us to easily classify all maximal tropical ideals of the semiring R[x1, . . . , xn].

Example 4.7 (Maximal tropical ideals of R[x].) We show that maximal tropical ideals of the semiring of
tropical polynomials R[x] = R[x1, . . . , xn] are in one to one correspondence with points in Rn. In fact,
for any a ∈ Rn, let Ja be the tropical ideal consisting of all polynomials that tropically vanish on a (see
Example 2.3). If a tropical ideal I satisfies V (I) 6= ∅ then I must be contained in one of the Ja. On the
other hand, if V (I) = ∅ then, by the tropical Nullstellensatz, I must be the unit ideal 〈0〉.
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