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The colored symmetric and exterior algebras

Rafael S. González D’León1†

1University of Kentucky, Lexington, KY 40506

Abstract. In this extended abstract we present colored generalizations of the symmetric algebra and its Koszul dual,
the exterior algebra. The symmetric group Sn acts on the multilinear components of these algebras. While Sn

acts trivially on the multilinear components of the colored symmetric algebra, we use poset topology techniques
to describe the representation on its Koszul dual. We introduce an Sn-poset of weighted subsets that we call the
weighted boolean algebra and we prove that the multilinear components of the colored exterior algebra are Sn-
isomorphic to the top cohomology modules of its maximal intervals. We show that the two colored Koszul dual
algebras are Koszul in the sense of Priddy et al.

Résumé. Dans ce résumé détaillé, nous présentons des généralisations colorées de l’algèbre symétrique et de sa duale
de Koszul, l’algèbre extérieure. Le groupe symétrique Sn agit sur les composantes multilinéaires de ces algèbres.
Tandis que Sn agit trivialement sur les composantes multilinéaires de l’algèbre symétrique colorée, nous utilisons
les techniques topologiques de la théorie des ensembles partiellement ordonnés pour décrire la représentation sur sa
duale de Koszul. Nous introduisons un Sn-ensemble partiellement ordonné de sous-ensembles pondérés que nous
appelons l’algèbre de Boole pondérée et nous montrons que les composantes multilinéaires de l’algèbre extérieure
colorée sont Sn-isomorphes aux modules cohomologiques supérieurs de ses intervalles maximaux. Nous montrons
que les deux algèbres colorées sont des Koszul dans le sens apporté par Priddy et al.

Keywords. symmetric algebra, exterior algebra, Koszul duality, boolean algebra, poset cohomology, symmetric
functions

1 Introduction
Let k denote a field of characteristic not equal to 2 and V be a finite dimensional k-vector space. The
tensor algebra T (V ) =

⊕
n≥0 V

⊗n is the free associative algebra generated by V , where V ⊗n denotes
the tensor product of n copies of V and V ⊗0 := k. For any set R ⊆ T (V ) denote by 〈R〉 the ideal of
T (V ) that R generates. Let R1 be the subspace of V ⊗ V generated by relations of the form

x⊗ y − y ⊗ x (symmetry), (1.1)

for all x, y ∈ V . The symmetric algebra S(V ) is the quotient algebra S(V ) := T (V )/〈R1〉.
Now let R2 ⊆ V ⊗ V be generated by relations of the form

x⊗ y + y ⊗ x (antisymmetry), (1.2)

†Email: rafaeldleon@uky.edu

1365–8050 c© 2016 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/dmtcs-ojs/index.php/volumes/
http://www.dmtcs.org/dmtcs-ojs/index.php/volumes/dmBCind.html


576 Rafael S. González D’León

for all x, y ∈ V . The exterior algebra Λ(V ) is the algebra Λ(V ) = T (V )/〈R2〉. We will use the
concatenation xy to denote the image of x⊗ y in S(V ) and the wedge x∧ y to denote the image of x⊗ y
in Λ(V ) under the canonical epimorphisms.

Let V ∗ := Hom(V,k) denote the vector space dual to V . For finite dimensional V we have that
V ∗ ' V . Recall that for an associative algebra A = A(V,R) := T (V )/〈R〉 generated on a finite
dimensional vector space V and (quadratic) relations R ⊆ V ⊗2 there is another algebra A! associated to
A that is called the Koszul dual associative algebra to A. Indeed, when V is finite dimensional, there
is a canonical isomorphism (V ⊗2)∗ ' V ∗ ⊗ V ∗ and we let R⊥ be the image under this isomorphism
of the space of elements in (V ⊗2)∗ that vanish on R. The Koszul dual A! of A is the algebra A! :=
A(V ∗, R⊥) = T (V ∗)/〈R⊥〉. It follows from relations (1.1) and (1.2) that Λ(V ∗) is the Koszul dual
associative algebra to S(V ).

Denote [n] := {1, 2, . . . , n} and let V = k[n] be the vector space with generators [n]. We define the
multilinear component S(n) as the subspace of S(V ) generated by products of the form σ(1)σ(2) · · ·σ(n)
where σ is a permutation in the symmetric group Sn. Similarly Λ(n) is defined to be the subspace of
Λ(V ) generated by wedged permutations, i.e., the generators are of the form σ(1)∧σ(2)∧ · · · ∧σ(n) for
σ ∈ Sn. The symmetric group acts on the generators of S(n) and Λ(n) by permuting their letters and
this action induces representations of Sn in both S(n) and Λ(n). Using the relations (1.1) and (1.2) we
can see that both S(n) and Λ(n) are always one-dimensional spaces with bases given by {12 · · ·n} and
{1 ∧ 2 ∧ · · · ∧ n} respectively. Moreover, for n ≥ 1 it is easy to see that

S(n) ∼=Sn 1n and Λ(n) ∼=Sn sgnn,

where 1n and sgnn are respectively the trivial and the sign representations of Sn.

1.1 Colored symmetric and exterior algebras
Let N denote the set of nonnegative integers and P the set of positive integers. For a subset S ⊆ P we
consider the set [n]S := [n]×S of colored letters of the form (x, i) (that we will denote xi) where x ∈ [n]
and i ∈ S. Let V = k[n] and V S = k[n]S where S ⊆ P is finite and CR1 ⊆ V S ⊗ V S be generated by

xi ⊗ yj − yi ⊗ xj (label symmetry), (1.3)

xi ⊗ yj − xj ⊗ yi (color symmetry), (1.4)

for all x, y ∈ [n] and i, j ∈ S. The S-colored symmetric algebra SS(V ) is defined to be the algebra
SS(V ) := T (V S)/〈CR1〉. We define the S-colored exterior algebra ΛS(V ∗) on V ∗ as the Koszul dual
to SS(V ). Explicitly, the reader can check that if we let CR2 ⊆ V S ⊗ V S be generated by

xi ⊗ yi + yi ⊗ xi (monochromatic antisymmetry), (1.5)

xi ⊗ yj + yi ⊗ xj + yj ⊗ xi + xj ⊗ yi (mixed antisymmetry), (1.6)

for all x, y ∈ [n] and i, j ∈ S, then ΛS(V ) = T (V S)/〈CR2〉. Choosing S = [k] for some k ∈ P and
letting k be large we obtain the colored symmetric algebra SP(V ) and the colored exterior algebraΛP(V ).
We denote SP(n) and ΛP(n) respectively the components of SP(V ) and ΛP(V ) generated by colored
permutations and wedged colored permutations. A colored permutation is a permutation σ ∈ Sn together
with a function that assigns to each x ∈ [n] a color color(x) ∈ P. For example 211432 is a colored
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permutation of [3] (here color(1) = 4, color(2) = 1 and color(3) = 2) and hence a generator in SP(3).
For a colored permutation σ of n let ∧(σ) denote the wedged colored permutation σ(1)∧σ(2)∧· · ·∧σ(n).
For example ∧(211432) = 21 ∧ 14 ∧ 32 is a generator in ΛP(3). Let SS

n denote the set of colored
permutations of [n] with colors in S ⊆ P.

A weak composition µ of n is a sequence of nonnegative integers (µ(1), µ(2), . . . ) such that |µ| :=∑
i≥1 µ(i) = n. Let wcomp be the set of weak compositions and wcompn the set of weak compositions

of n. For example, (0, 1, 2, 0, 1) := (0, 1, 2, 0, 1, 0, 0, . . . ) is in wcomp4.
For σ ∈ SP

n let µ(σ) ∈ wcomp be such that µ(σ)(j) is the number of letters of color j in σ for each j,
we call µ(σ) the content of σ. For µ ∈ wcomp we denote by Sµ the set of colored permutations of content
µ. Define S(µ) and Λ(µ) to be respectively the subspaces of SP(|µ|) and ΛP(|µ|) generated by colored
permutations and wedged colored permutations in Sµ. For example S(0, 1, 2, 0, 1) and Λ(0, 1, 2, 0, 1)
have generators associated with colored permutations of [4] that contain one letter of color 2, two letters
of color 3, one letter of color 5 and no other letters. The symmetric group Sn acts on SP(n) and ΛP(n)
as before. A permutation τ ∈ Sn acts by replacing the colored letter xi for the colored letter τ(x)i. This
action preserves the colors of the generators and so S(µ) and Λ(µ) are also representations of Sn. Clearly
if ν is a rearrangement of µ, we have that S(ν) 'Sn S(µ) and Λ(ν) 'Sn Λ(µ). In particular, if µ has a
single nonzero component then S(µ) is isomorphic to S(n) and Λ(µ) is isomorphic to Λ(n).

For µ ∈ wcompn define its support supp(µ) = {j ∈ P | µ(j) 6= 0}. Then for S ⊆ P we have

SS(n) 'Sn

⊕
µ∈wcompn
supp(µ)⊆S

S(µ) and ΛS(n) 'Sn

⊕
µ∈wcompn
supp(µ)⊆S

Λ(µ).

The following theorem follows immediately from relations (1.3) and (1.4).

Theorem 1.1 For n ≥ 1 and µ ∈ wcompn,

S(µ) ∼=Sn 1n.

Our goal is to understand the more interesting representation of Sn on Λ(µ) for all µ ∈ wcomp. For
this we are going to apply the program started by Hanlon and Wachs in [6] and by Wachs in [13]. They
applied poset topology techniques to the partially ordered set (or poset) Πn of partitions of the set [n], and
to the induced subposet of Πn where all partitions have parts of size congruent to 1 mod (k− 1), in order
to understand algebraic properties of the multilinear components of the free Lie algebra and the free Lie k-
algebra. The author and Wachs [5] and the author [4] have applied similar techniques to a family of posets
of weighted partitions in their study of the operad of Lie algebras with multiple compatible brackets and
its Koszul dual operad, the operad of commutative algebras with multiple totally commutative products.
The original motivation for the present work is precisely the study of analogous constructions within the
category of connected graded associative algebras.

The main idea of the technique in [6, 13, 5, 4] is that in order to study the representation of Sn

on the multilinear component A(n) of certain algebra A, a certain poset PA is constructed so that the
(co)homology of PA (defined later) is Sn-isomorphic to A(n) (perhaps up to tensoring with the sign
representation). Then poset topology techniques applied to PA can recover algebraic information about
A(n). We will be following very closely the thread of ideas in [4]. We will recall here some of the con-
cepts involved while referring the reader to consult [4] for most of the background and related notation.
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To every poset P one can associate a simplicial complex ∆(P ) (called the order complex) whose faces
are the chains (totally ordered subsets) of P . If there is a group G acting on the poset in such a way that
every g ∈ G is a (strict) order preserving map on P then this action induces isomorphic representations
of G on the j-th reduced simplicial homology H̃j(P ) and cohomology H̃j(P ) of the order complex
∆(P ). Let P be bounded (it has a minimal element (denoted 0̂) and a maximal element (denoted 1̂))
and pure (all the maximal chains have the same length), if for any open interval (x, y) in P it happens
that H̃i((x, y)) = 0 for all x < y in P and i < l([x, y]) − 2 we say that P is Cohen-Macaulay. Some
poset topology techniques on pure bounded posets, like the theory of lexicographic shellability, imply
Cohen-Macaulayness.

Recall that the boolean algebra Bn is the poset of subsets of [n] ordered by inclusion. It is known
that Bn is Cohen-Macaulay and there is a natural action of Sn on Bn permuting the elements in [n].
This action induces a representation of Sn on the unique nonvanishing reduced simplicial cohomology
H̃n−2(Bn) of the proper part Bn := Bn\{0̂, 1̂} of Bn. The following isomorphism of Sn-representations
is already a classical result (see [11]),

H̃n−2(Bn) 'Sn sgnn . (1.7)

1.2 The weighted boolean algebra
For undefined poset notation and terminology the reader can consult [14]. Let WCOMP be the partially
ordered set of weak compositions with order relation defined as follows: for every ν, µ ∈ wcomp, we say
that µ ≤ ν if µ(i) ≤ ν(i) for every i. We define WCOMPn to be the induced subposet of WCOMP
whose elements are weak compositions µ ∈ wcomp with |µ| ≤ n. A weighted subset of [n] is a set Bµ

where B ⊆ [n] and µ ∈ wcomp|B|. Since weak compositions are infinite vectors we can use component-
wise addition and subtraction, for instance, we denote by ν + µ, the weak composition defined by (ν +
µ)(i) := ν(i) + µ(i).

The weighted boolean algebra Bwn is the partially ordered set (poset) of weighted subsets of [n] with
covering order relation given by Aµ lBν if the following conditions hold:

• AlB in Bn and,

• ν − µ = er for some r ∈ P, where er is the weak composition with a 1 in the r-th component and
0 in all other entries.

For S ∈ P we also denote by BSn the induced subposet of Bwn whose elements are weighted subsets Bµ

with supp(µ) ⊆ S. In Figure 1(a) we illustrate the Hasse diagram of the poset B[2]
3 .

The poset Bwn has a minimum element 0̂ := ∅0 and maximal elements [n]µ := {[n]µ} indexed by
weak compositions µ ∈ wcompn. Note that for every ν, µ ∈ wcompn such that ν is a rearrangement of
µ, the maximal intervals [0̂, [n]ν ] and [0̂, [n]µ] are isomorphic to each other. In particular, if µ has a single
nonzero component, these intervals are isomorphic to Bn, hence B[1]

n ' Bn. In the case when S = [2] the
poset B[2]

n is isomorphic to a poset introduced by Shareshian and Wachs in [10] and it is closely related to
a poset of Björner and Welker in [2].

The symmetric group Sn acts on Bwn . Indeed for any Bµ ∈ Bwn and τ ∈ Sn we have τBµ := (τB)µ

where τB := {τ(i) | i ∈ B}. Since any τ ∈ Sn is a strict order preserving morphism, the action of
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∅(0,0)

1(1,0) 2(1,0) 3(1,0) 1(0,1) 2(0,1) 3(0,1)

12(2,0) 13(2,0) 23(2,0) 12(1,1) 13(1,1) 23(1,1) 12(0,2) 13(0,2) 23(0,2)

123(3,0) 123(2,1) 123(1,2) 123(0,3)

(a) B[2]
3

∅(0,0)

1(1,0) 2(1,0) 3(1,0) 1(0,1) 2(0,1) 3(0,1)

12(2,0) 13(2,0) 23(2,0) 12(1,1) 13(1,1) 23(1,1) 12(0,2) 13(0,2) 23(0,2)

123(3,0) 123(2,1) 123(1,2) 123(0,3)

1̂

11

21

31

12

22

32

41

(b) A labeling of B̂[2]
3

Fig. 1: The weighted boolean algebra

Sn on Bwn induces and action on the unique reduced (co)homology H̃n−2((0̂, [n]µ)) of the open maximal
interval (0̂, [n]µ) of Bwn .

The outline of this extended abstract is as follows: In Section 2, for every µ ∈ wcompn we give a
generalization of the isomorphism (1.7). In Section 3 we use the more general isomorphism and an EL-
labeling of B̂wn := Bwn ∪ {1̂}, the poset Bwn after a maximal element has been added, to derive bases
and compute the dimensions for Λ(µ) and H̃n−2((0̂, [n]µ)). In Section 4 we present a multiplicative
inverse formula for the generating function of the Frobenius characteristic of Λ(µ) and H̃n−2((0̂, [n]µ)).
This formula is derived in the full version of the paper using a technique of Sundaram [12] to compute
group representations on Cohen-Macaulay G-posets. Then using the multiplicative inverse formula and
a result of Gessel we describe explicitly the expansion of Λ(µ) and H̃n−2((0̂, [n]µ)) into irreducible
representations. Finally, we use a technique of Méndez in Section 5 to conclude in Theorem 5.2 that for a
finite S and finite dimensional V the Koszul dual algebras SS(V ) and ΛS(V ) are Koszul in the sense of
Priddy [9].

2 The isomorphism
2.1 A generating set for H̃n−2((0̂, [n]µ))

The top dimensional cohomology of a pure poset P , say of length `, has a particularly simple description.
LetM(P ) denote the set of maximal chains of P and letM′(P ) denote the set of chains of length `− 1.
We view the coboundary map δ as a map from the chain space of P to itself, which takes chains of length
r to chains of length r + 1 for all r. Since the image of δ on the top chain space (i.e. the space spanned
byM(P )) is 0, the kernel is the entire top chain space. Hence the top cohomology is the quotient of the
space spanned byM(P ) by the image of the space spanned byM′(P ). The image ofM′(P ) is what we
call the coboundary relations. We thus have as a presentation of the top cohomology

H̃`(P ) = 〈M(P )| coboundary relations〉.
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It can be shown (see for example the appendix in [5]) that the cohomology relations in the top cohomology
are generated by relations of the form∑

α∈(αi−1,αi)

(α0 < · · · < αi−1 < α < αi < · · · < αd) = 0. (2.1)

where α0 < · · · < α`−1 ∈ M′(P ) is a chain that can be refined (or augmented) in exactly one step
αi−1 < αi for some i = 0, . . . , ` to get a chain inM(P ).

It is not too hard to see that the maximal chains in a maximal interval [0̂, [n]µ] of Bwn are in bijection with
colored permutations. Indeed, a map λ̄ : E(P ) → Λ, where E(P ) is the set of edges (covering relations)
of the Hasse diagram of a poset P and Λ is a fixed poset is called an edge labeling. Note that a covering
relation in Bwn is of the form Aν l (A ∪ {x})a+ei where Aν is a weighted subset of [n], x ∈ [n] \ A and
i ∈ P. So we can associate a labeling λ̄ : E(Bwn )→ [n]P given by

λ̄(Aν , (A ∪ {x})ν+ei) = xi. (2.2)

We will show in Section 3 that this labeling λ̄ can be extended to an EL-labeling (defined in Section 3.1)
of B̂wn := Bwn ∪ {1̂}, that is Bwn with a maximal element added (See also Figure 1(b)). We denote by

λ̄(c) = λ̄(x0, x1)λ̄(x1, x2) · · · λ̄(x`−1, x`),

the word of labels corresponding to a maximal chain c = (0̂ = x0lx1l · · ·lx`−1lx` = 1̂). In the case
c ∈M([0̂, [n]µ]) it is immediate that λ̄(c) ∈ Sµ since in each covering relation in c a different letter from
[n] appears in each step and c has length n. Moreover, c follows the sequence of colors corresponding to
µ. For example the chain

0̂ l {2}(1,0,0,0) l {1, 2}(1,0,0,1) l {1, 2, 3}(1,1,0,1)

has the colored permutation 211432 as a word of labels. Clearly, starting with σ ∈ Sµ we can also recover
the chain c ∈M([0̂, [n]µ]) such that λ̄(c) = σ. Indeed, for σ ∈ Sµ define the chain c(σ) ∈M([0̂, [n]µ])
to be the one whose rank 0 element is 0̂ and whose rank i weighted subset is

{σ(1), σ(2), . . . , σ(i)}ecolor(σ(1))+ecolor(σ(2))+···+ecolor(σ(i))

for all i ∈ [n]. Using induction we can conclude the following theorem.

Proposition 2.1 The maps λ̄ and c above define a bijection

M([0̂, [n]µ]) ' Sµ.

Note also that for a bounded poset P the setsM(P ) andM(P \ {0̂, 1̂}) are in bijection by associating a
chain c ∈M(P ) with a chain c̄ := c \{0̂, 1̂} ∈ M(P \{0̂, 1̂}). For σ ∈ Sµ we write c̄(σ) := c(σ)\{0̂, 1̂}
for the corresponding chain in (0̂, [n]µ).

The codimension one cohomology relations (2.1) in (0̂, [n]µ) correspond to the two different types of
intervals of length 2 in [0̂, [n]µ]. The intervals of length 2 happen when two elements x and y have been
added to a weighted subset Aa and the weight has been increased accordingly. The Type I intervals occur
when the weight has been increased by 2ei and the Type II intervals when the weight has been increased
by ei + ej with i 6= j ∈ P. In the following we denote αxiyiβ to a colored permutation where α and β
denote the starting and trailing colored subwords.
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Theorem 2.2 The set {c̄(σ) | σ ∈ Sµ} is a generating set for H̃n−2((0̂, [n]µ)), subject only to the
relations for i 6= j ∈ supp(µ)

c̄(αxiyiβ) + c̄(αyixiβ) = 0 (2.3)

c̄(αxiyjβ) + c̄(αyjxiβ) + c̄(αyixjβ) + c̄(αxjyiβ) = 0 (2.4)

Proof: Observe that the relations (2.3) and (2.4) correspond exactly to the codimension one cohomology
relations of Type I and Type II respectively. 2

2.2 The isomorphism
Note that following the relations (1.5) and (1.6) we can conclude a similar proposition for Λ(µ).

Proposition 2.3 The set {∧(σ) | σ ∈ Sµ} is a generating set for Λ(µ) subject only to the relations for
i 6= j ∈ supp(µ)

∧ (αxiyiβ) + ∧(αyixiβ) = 0 (2.5)

∧ (αxiyjβ) + ∧(αyjxiβ) + ∧(αyixjβ) + ∧(αxjyiβ) = 0 (2.6)

Theorem 2.4 For each µ ∈ wcompn, the map ϕ : Λ(µ)→ H̃n−2((0̂, [n]µ)) determined by

ϕ(∧(σ)) = c̄(σ) for all σ ∈ Sµ,

is an Sn-module isomorphism.

Proof: The generators of the two sets Λ(µ) and H̃n−2((0̂, [n]µ)) are indexed by colored permutations in
Sµ and ϕ maps generators to generators. By Theorem 2.2 and Proposition 2.3 ϕ also maps relations to
relations and clearly respects the Sn-action. 2

3 Homotopy type of maximal intervals in Bwn
3.1 EL-labeling
Let P be a bounded poset. Recall the definition of edge labeling from Section 2. We say that a maximal
chain c is increasing if its word of labels λ̄(c) is strictly increasing, that is, c is increasing if

λ̄(x0, x1) < λ̄(x1, x2) < · · · < λ̄(x`−1, x`).

We say that c is ascent-free (or decreasing, or falling) if its word of labels λ̄(c) has no ascents, i.e.
λ̄(xi, xi+1) 6< λ̄(xi+1, xi+2), for all i = 0, . . . , t − 2. An edge-lexicographical labeling (EL-labeling,
for short) of P is an edge labeling such that in each closed interval [x, y] of P , there is a unique increasing
maximal chain, and this chain lexicographically precedes all other maximal chains of [x, y]. See [1] for
more information about EL-labelings.

We let Λ = [n+ 1]P := [n+ 1]× P the product poset of the totally ordered sets [n+ 1] and P and we
define for any S ⊆ P the labeling λ̄ : E(B̂Sn)→ [n+ 1]P by

λ̄(Aν , (A ∪ {x})ν+ei) = xi and λ̄([n]µ, 1̂) = (n+ 1)1. (3.1)



582 Rafael S. González D’León

Theorem 3.1 The labeling λ̄ : E(B̂Sn)→ [n+ 1]P in (3.1) is an EL-labeling of B̂Sn .

The proof of this theorem is similar to the one of [5, Theorem 3.2] and is given in the full version of

this paper. In Figure 1(b) the labeling of B̂[2]
n is illustrated. The edges have been differentiated by color

corresponding to the different labels in the legend.
The following theorem links lexicographic shellability of a poset P with the topology of ∆(P ).

Theorem 3.2 (Björner and Wachs [1]) Let λ be an EL-labeling of a bounded poset P . Then ∆(P ) is
homotopy equivalent to a wedge of spheres of dimension `(P ) − 2, where the number of spheres is the
number of ascent-free maximal chains in P . Moreover the set {c̄ ∈ M(P ) | c is ascent-free } forms a
basis for the cohomology H̃`(P )−2(P ).

We would like to characterize the ascent-free chains of the EL-labeling of Theorem 3.1. We already
know by Proposition 2.1 that the maximal chains in BSn are in bijection with permutations in SS

n . Since
any maximal chain in B̂Sn is of the form c′ ∪{1̂} where c′ is a maximal chain in BSn then the permutations
in SS

n are also in bijection with maximal chains in B̂Sn . For σ ∈ SS
n denote ĉ(σ) := c(σ) ∪ {1̂}.

An ascent in a colored permutation σ ∈ SP
n is a value i ∈ [n− 1] such that

• σ(i) < σ(i+ 1), that is, i is an ascent in the underlying uncolored permutation σ̃ ∈ Sn, and

• color(σ(i)) ≤ color(σ(i+ 1)).

A nonincreasing colored permutation is a colored permutation σ ∈ SP
n that is ascent free. For example

211432 is a nonincreasing colored permutation but 211234 is not since the pair (12, 34) forms an ascent.
Let Nincn be the set of nonincreasing colored permutations and Nincµ the ones with content µ. More-

over, denote by NincSn the set of permutations in NincSn with color(σ(n)) 6= 1. We have the following
characterization of the ascent-free chains.

Theorem 3.3 The set {ĉ(σ) | σ ∈ NincSn} is the set of ascent-free maximal chains of B̂Sn and for every
µ ∈ wcomp, the set {c(σ) | σ ∈ Nincµ} is the set of ascent-free maximal chains of [0̂, [n]µ] in the EL-
labeling of Theorem 3.1. Consequently, the poset B̂Sn is Cohen-Macaulay and its order complex ∆(BSn \
{0̂}) has the homotopy type of a wedge of |NincSn | spheres of dimension (n−1) and the interval [0̂, [n]µ] is
Cohen-Macaulay and its order complex ∆((0̂, [n]µ)) has the homotopy type of a wedge of |Nincµ| spheres
of dimension (n− 2).

Corollary 3.4 The set {c(σ)\{0̂} | σ ∈ NincSn} is a basis for H̃n−1(BSn\{0̂}) and for every µ ∈ wcomp

the set {c̄(σ) | σ ∈ Nincµ} is a basis for H̃n−2((0̂, [n]µ)).

Using the isomorphism of Theorem 2.4 and Corollary 3.4 we conclude the following theorem.

Theorem 3.5 For µ ∈ wcomp, the set {∧(σ) | σ ∈ Nincµ} is a basis for Λ(µ). Consequently,

dimΛ(µ) = |Nincµ|.

Consider the generating function ∑
µ∈wcompn

dimΛ(µ)xµ, (3.2)
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where xµ = x
µ(1)
1 x

µ(2)
2 · · · . Since dimΛ(µ) is invariant under any rearrangement of the parts of µ we

have that (3.2) belongs to the ring of symmetric functions ΛZ. The symmetric function (3.2) is also
e-positive; i.e., its coefficients of the expansion in the basis of elementary symmetric functions are all
nonnegative. Indeed, we associate a type (or integer partition) to each σ ∈ Sn in the following way: Let
π(σ) be the finest (set) partition of the set [n] satisfying

• whenever σ(i) < σ(i + 1) for some i ∈ [n − 1], σ(i) and σ(i + 1) belong to the same block of
π(σ).

We define the type λ(σ) of σ to be the (integer) partition whose parts are the sizes of the blocks of π(σ).
For example, for the permutation 5126473 the associated partition is λ(σ) = (3, 2, 1, 1).

Theorem 3.6 For all n, ∑
µ∈wcompn

dimΛ(µ)xµ =
∑
σ∈Sn

eλ(σ)(x),

where eλ is the elementary symmetric function associated with the partition λ.

Proof: If σ ∈ SP
n is a colored permutation, denote by σ̃ ∈ Sn the underlying uncolored permutation

associated to σ. For example if σ = 211432 then σ̃ = 213. Note that the type λ(τ) for a permutation
τ ∈ Sn is closely related to the coloring condition in Nincn. If σ ∈ Nincn such that σ̃ = τ the colors
in each part of the partition π(τ) need to strictly decrease from left to right. If B is a block of π(τ) of
size |B| = i then the elementary symmetric function ei(x) enumerates all the possible ways of coloring
the letters in B. Then the contribution to the generating function (3.2) of all the nonincreasing colored
permutations with underlying uncolored permutation τ is eλ(τ). 2

Theorem 4.3 in Section 4 provides another characterization of the symmetric function (3.2).

4 The Frobenius characteristic of Λ(µ)
4.1 A multiplicative inverse formula

For some ring R, let ΛR denote the ring of symmetric functions with coefficients in R and Λ̂R the com-
pletion of ΛR with respect to the Hall’s inner product (i.e., the ring of symmetric power series with
coefficients in R). It is known that the Grothendieck ring of representations of symmetric groups RepS
is isomorphic to the ring of symmetric functions ΛZ (we use here variables y = (y1, y2, . . . )) under the
Frobenius characteristic map ch : RepS → ΛZ. Under this isomorphism, for a (perhaps empty) integer
partition λ the Specht module Sλ indexed by λ maps to the Schur function sλ.

Theorem 4.1 We have that∑
n≥0

∑
µ∈wcompn

ch H̃n−2((0̂, [n]µ))xµ =
(∑
n≥0

(−1)nhn(x)hn(y)
)−1

,

where hn is the complete homogeneous symmetric function and (·)−1 denotes the multiplicative inverse
of a formal power series.
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The proof of Theorem 4.1 in the full version of this paper requires various technical lemmas and uses a
technique introduced by Sundaram [12] to compute group representations on the (co)homology of Cohen-
Macaulay G-posets (see [4] for the proof of an analogous result).

The following theorem is a corollary of the isomorphism of Theorem 2.4 and of Theorem 4.1.

Theorem 4.2 We have that∑
n≥0

∑
µ∈wcompn

chΛ(µ)xµ =
(∑
n≥0

(−1)nhn(x)hn(y)
)−1

.

Note that the power series in Theorems 4.1 and 4.2 belong to Λ̂R with R = ΛQ. Now consider the
map E : Λ̂R → R[[y]] defined by E(pi(y)) = yδi,1 for i ≥ 1 and extended multiplicatively, linearly and
taking the corresponding limits to all of Λ̂R. Note that E is a ring homomorphism since E is defined on
generators. The effect of E can be better understood under the following definition of the Frobenius map.

E(chV ) = E

(
1

n!

∑
σ∈Sn

χV (σ)pλ(σ)(y)

)
=

1

n!

∑
σ∈Sn

χV (σ)E
(
pλ(σ)(y)

)
= χV (id)

yn

n!
= dimV

yn

n!
,

where V is a representation of Sn, χV its character and λ(σ) is the cycle type of σ ∈ Sn. In particular
since hn(y) = ch(1n), the Frobenius characteristic of the trivial representation, we have thatE(hn(y)) =
yn/n!. Applying E in Theorem 4.2 yields another characterization of the family of symmetric functions
(3.2).

Theorem 4.3 We have

∑
n≥0

∑
µ∈wcompn−1

dimΛ(µ)xµ
yn

n!
=

∑
n≥0

(−1)nhn(x)
yn

n!

−1 .
Theorem 4.3 can be also proven directly using for example the recursive definition of the Möbius

invariant of the maximal intervals of Bwn , Philip Hall’s theorem (see for example [14]) and Theorem 2.4.

4.2 Explicit description of the Sn representation on Λ(n)
A composition α = (α1, . . . , α`) is a finite sequence of elements αi ∈ P. We say that α is a composition
of n if |α| :=

∑
i αi = n and we denote by compn the set of compositions of n. We denote λ(α) the

integer partition obtained from α by reordering its parts in weakly decreasing order. A skew hook is a
connected skew shape that avoids the shape (2, 2). Every skew hook can be descrided by a composition α
whose parts are the lengths of the horizontal steps from left to right. We denote by H(α) the skew hook
determined by α ∈ comp. See Figure 2 for an example of a skew hook.

In the full version of this article we give a proof of the following theorem using the combinatorial
interpretation of the multiplicative inverse of an ordinary generating function in terms of words with
allowed and forbidden links discovered by Carlitz-Scoville-Vaughan [3].

Theorem 4.4 (Gessel, personal communication) We have that(∑
n≥0

(−1)nhn(x)hn(y)
)−1

=
∑
n≥0

∑
α∈compn

eλ(α)(x)sH(α)(y).
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Fig. 2: Skew hook H(3, 2, 1, 1, 3)

If we number the cells of a skew hook H left-to-right and bottom-to-top, i is a descent of H if the cell
i + 1 is above the cell i. We denote by des(H) the descent set of H . For a standard Young tableau of
shape λ a descent is an entry i that is in a higher row than i+ 1.

Proposition 4.5 (c.f. [14]) For a skew hook H we have that

sH(y) =
∑
λ`n

cH,λsλ(y),

where cH,λ is the number of Young tableaux of shape λ and descent set des(H).

Theorems 4.3 and 4.4 together with Proposition 4.5 yield Theorem 4.6 as a corollary.

Theorem 4.6 For n ≥ 1 we have that∑
µ∈wcompn

chΛ(µ)xµ =
∑
η`n

∑
α∈compn

cH(α),ηeλ(α)(x)sη(y).

Theorem 4.6 can be seen as an equivariant version of the e-positivity in Theorem 3.6. Indeed, if we
write ∑

µ∈wcompn

chΛ(µ)xµ =
∑
λ`n

Cλ(y)eλ(x),

then Theorem 4.6 implies that the coefficients Cλ(y) are Schur-positive.

5 The Koszul property
A quadratic associative algebra A and its Koszul dual (co)algebra A¡ are said to be Koszul if the Koszul
complex A¡ ⊗κ A is acyclic (see [7] for the definitions). There are various techniques to conclude the
Koszul property of an associative algebra. We use the technique in [8] that involves determining that a
family of posets associated to certain types of algebras are Cohen-Macaulay. For a finite subset S ∈ P the
equivalence classes of generators, after the symmetry relations (1.3) and (1.4), in SS(n) can be identified
with colored subsets Aµ, where A ⊆ [n] and µ ∈ wcomp|A| with supp(µ) ∈ S. Let SS(n) be the set of
colored subsets whose underlying set is A = [n], the map [n] 7→ SS(n) defines a functor (Joyal’s species)
from the category Set of finite sets and bijections to the category F of finite sets and arbitrary functions.
It is easy to verify that this functor is a quadratic (by relations (1.3) and (1.4) ) injective (cancellative)
monoid or c-monoid in the sense of [8] and that the poset associated to SS in the construction in [8, Section
5.1] is precisely the family of posets BSn for n ≥ 0. Moreover, the analytic functor SS : V ectk → V ectk
associated to SS is V 7→ SS(V ).
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Theorem 5.1 ([8, Proposition 22, Lemma 40, Theorem 41]) Let M be a c-monoid with associated an-
alytic monoid M . Then M and its Koszul dual M ! are Koszul if and only if the maximal intervals of the
poset associated to M are Cohen-Macaulay.

Hence the fact that SS(V ) and ΛS(V ) are Koszul is a consequence of Theorem 3.3 and 5.1 (We provide
all the details in the full version of this paper).

Theorem 5.2 For a finite dimensional vector space V and a finite subset S ⊆ P, the Koszul dual asso-
ciative algebras SS(V ) and ΛS(V ) are Koszul.
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