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Combinatorial description of the cohomology
of the affine flag variety

Seung Jin Lee†

School of Mathematics, Korea Institute for Advanced Study, 85 Hoegiro Dongdaemun-gu, Seoul 130-722, Republic
of Korea.

Abstract. We construct the affine version of the Fomin-Kirillov algebra, called the affine FK algebra, to investigate
the combinatorics of affine Schubert calculus for type A. We introduce Murnaghan-Nakayama elements and Dunkl
elements in the affine FK algebra. We show that they are commutative as Bruhat operators, and the commutative
algebra generated by these operators is isomorphic to the cohomology of the affine flag variety. As a byproduct, we
obtain Murnaghan-Nakayama rules both for the affine Schubert polynomials and affine Stanley symmetric functions.
This enable us to express k-Schur functions in terms of power sum symmetric functions. We also provide the defi-
nition of the affine Schubert polynomials, polynomial representatives of the Schubert basis in the cohomology of the
affine flag variety.

Résumé. Nous construisons la version affine de l’algèbre Fomin-Kirillov, appelé l’algèbre FK affine, pour enquêter
sur la combinatoire du calcul de Schubert affine pour le type A. Nous introduisons des éléments Murnaghan-
Nakayama et éléments de Dunkl dans l’algèbre FK affine. Nous montrons qu’ils sont commutative comme opérateurs
Bruhat, et l’algèbre commutative généré par ces opérateurs est isomorphe à la cohomologie de la variété affine du
pavillon. En tant que sous-produit, on obtient règles de Murnaghan-Nakayama tant pour les polynômes de Schu-
bert affines et les fonctions symétriques de Stanley affines. Cela nous permet d’exprimer des fonctions k -Schur en
termes de fonctions symétriques puissance de somme. Nous fournissons également la définition de les polynômes
de Schubert affines, des représentants polynômes de la base Schubert dans la cohomologie de la variété affine du
pavillon.

Keywords. affine flag variety, affine Fomin-Kirillov algebra, affine nilCoxeter algebra, affine Schubert polynomials,
k-Schur function, Murnaghan-Nakayama rule

1 Introduction
Fomin and Kirillov defined a certain quadratic algebra, also called the Fomin-Kirillov algebra, to better
understand the combinatorics of the cohomology ring of the flag variety. They showed that the com-
mutative subalgebra generated by Dunkl elements of degree 1 is isomorphic to the cohomology of the
flag variety. Since then, a lot of variations for the quadratic algebra have been studied [Kir15, KM04,
KM05a, KM05b, KM10, KM12]. For example, there are generalizations of the Fomin-Kirillov algebra
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for K-theory, quantum, equivariant cohomology and for other finite types.

In this extended abstract, we introduce the affine Fomin-Kirillov algebra (affine FK algebra in short),
generalizing the Fomin-Kirillov algebra to affine type A, to describe the cohomology of the affine flag
variety. We introduce higher degree generators called Murnaghan-Nakayama elements in the affine FK
algebra. Elements in the affine FK algebra induce the Bruhat actions on the affine nilCoxeter algebra A,
which is isomorphic to the homology of the affine flag variety as a Q-module. We show that Murnaghan-
Nakayama elements and Dunkl elements commute with each other as Bruhat operators and show that the
algebra generated by these elements as Bruhat operators is isomorphic to the cohomology of the affine
flag variety as subalgebras in HomQ(A,A). Our proof identifies three different operators on A, namely:
Bruhat operators, cap operators defined by the author [Lee14], and the operators defined by Berg, Saliola
and Serrano [BSS14] on the affine nilCoxeter algebra A. The identification combines algebraic, geometric
and combinatorial components of affine Schubert calculus. Those three operators will be considered as
elements in HomQ(A,A). In this extended abstract, we mainly discuss Bruhat operators and cap operators.

Positive integers n ≥ 2 and k = n − 1 will be fixed throughout the paper. The coefficient ring of the
cohomology is Q, and related combinatorics will be adjusted accordingly although the three operators are
well-defined over Z.

1.1 Cap operators
The set {Aw : w ∈ S̃n} forms a basis of A (see Section 2.3), where S̃n is the affine symmetric group.
There is a coproduct structure on A defined by

∆(Aw) =
∑

pwu,vAu ⊗Av

where the sum is over all u, v ∈ S̃n satisfying `(w) = `(u) + `(v). Kostant and Kumar [KK86] showed
that pwu,v is the same as the structure coefficient for the cohomology of the affine flag variety. Note that
pwu,v’s are nonnegative integers [Gra01].

For u ∈ S̃n, a cap operator Du is defined by

Du(Aw) =
∑

pwu,vAv.

where the sum is over all v ∈ S̃n satisfying `(w) = `(u) + `(v). Let φid be the map from A to Q by
taking the coefficient of Aid. Then φid induces a Q-module homomorphism φid,∗ from HomQ(A,A) to
HomQ(A,Q). Note that the cohomology of the affine flag variety is isomorphic to HomQ(A,Q) over
Q [KK86], and the Schubert basis ξw can be considered as an element in HomQ(A,Q) defined by
ξw(Av) = δw,v for all v ∈ S̃n. However, the problem with this description is that there is no natural
product structure on HomQ(A,Q).

One can avoid this problem by considering cap operators. It is obvious that the image of Dw via φid,∗
is ξw so that the cohomology of the affine flag variety can be identified with the subalgebra generated by
Dw in HomQ(A,A), which naturally has the product structure by composition. Geometrically, Du(Aw)
can be identified with ξu ∩ ξw where ξu is the Schubert class for u in the cohomology, ξw is the Schubert
class for w in the homology of the affine flag variety, and ∩ is the cap product.
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1.2 Bruhat operators
The affine Fomin-Kirillov algebra is generated by [ij] for i < j with distinct residues modulo n with
certain quadratic relations among [ij]. An element [ij] can be considered as a (right) Bruhat action on the
affine nilCoxeter algebra defined by

Aw · [ij] =

{
Awtij if `(wtij) = `(w)− 1

0 otherwise

for all w ∈ S̃n, where tij is a transposition in S̃n. For an element x in the affine FK algebra, define
Dx(Aw) = Aw · x when it is well-defined. In this paper, we only consider elements x such that Dx(Aw)

are well-defined for all w ∈ S̃n. See Section 3 for details.

Now we are ready to state the main theorems in this paper.
For 0 ≤ i < m < n, let ρi,m be the element s−is−i+1 . . . s−1sm−1−ism−2−i . . . s1s0 in S̃n. Let θ̃i (resp.
pm) be the Dunkl elements (resp. MN elements) in the affine FK algebra defined in Section 4.

Theorem 1.1 For 0 ≤ i < m < n, we have

Dθ̃i
= Dsi+1 −Dsi ,

Dpm
=

m−1∑
i=0

(−1)iDρi,m .

Theorem 1.1 allows us to identify Dθ̃i
with ξi+1 − ξi, and Dpm

with ξ(m) :=
∑m−1
i=0 (−1)iξρi,m .

Since the first equation is immediate from the Chevalley rule, we mainly focus on properties of pm. Note
that the second equation together with the definition of pm provides MN rule for the cohomology of the
affine flag variety, which also provides MN rule for the affine Stanley symmetric functions. It also implies
a description of k-Schur functions in terms of power sum symmetric functions which gives the character
table of the representation of the symmetric group whose Frobenius characteristic image is the k-Schur
function.

It turns out that the cohomology of the affine flag variety F̂ l is generated by all ξi+1 − ξi and ξ(m),
and the subalgebra generated by ξi+1− ξi (resp. ξ(m)) is isomorphic to the cohomology of the finite flag
variety Fln (resp. the affine Grassmannian Ĝr). It provides the following isomorphism

H∗(F̂ l) ∼= H∗(Ĝr)⊗H∗(Fln) ∼= Q[p1, . . . , pn−1, x1, . . . , xn]/〈hi(x) = 0 ∀i〉 =: Rn

where all pm and xi commute with each other and pm (resp. xi) corresponds to ξ(m) (resp. ξi+1 − ξi),
and hi(x) is a homogeneous polynomial of degree i in x1, . . . , xn. The affine Schubert polynomial S̃w

for w ∈ S̃n is defined by the image of ξw inRn via the above isomorphism. We provide an explicit defini-
tion of the affine Schubert polynomials in terms of divided difference operators without proof. The affine
Schubert polynomials simultaneously generalize the affine Schubert polynomials and Schubert polyno-
mials. See [Lee15] for details.
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The paper is structured as follows: In Section 2, we review affine symmetric groups, symmetric func-
tions, and the affine nilCoxeter algebra. In Section 3, we define the affine FK algebra and study the Bruhat
operator acting on the affine nilCoxeter algebra. In Section 4, we define Dunkl elements and Murnaghan-
Nakayama elements, and investigate relations among those elements. In particular, we list identities that
uniquely determine Bruhat operators for MN elements. In Section 5, we prove Theorem 1.1. In section 6,
we provide the Murnaghan-Nakayama rules both for the affine Schubert polynomial and the affine Stan-
ley symmetric functions. we also discuss a new formula for k-Schur functions in terms of power sum
symmetric functions as well as its relation with representation theory. In section 7, we define the affine
Schubert polynomials in terms of divided difference operators.

2 Preliminaries
2.1 Affine symmetric group
Let I be the set {0, 1, . . . , n − 1} = Z/nZ. Let S̃n denote the affine symmetric group with simple
generators s0, s1, . . . , sn−1 satisfying the relations

s2i = 1

sisi+1si = si+1sisi+1

sisj = sjsi if i− j 6= 1,−1.

where indices are taken modulo n. An element of the affine symmetric group may be written as a word in
the generators si. A reduced word of the element is a word of minimal length. The length of w, denoted
`(w), is the number of generators in any reduced word of w. The Bruhat order, also called strong order,
on affine symmetric group elements is a partial order where u < w if there is a reduced word for u that is
a subword of a reduced word for w. If u < w and `(u) = `(w)− 1, we write ulw. The subgroup of S̃n
generated by {s1, · · · , sn−1} is naturally isomorphic to the symmetric group Sn. The 0-Grassmannian
elements are minimal length coset representatives of S̃n/Sn. In other words, w is 0-Grassmannian if and
only if all reduced words of w end with s0.

2.2 Symmetric functions
Let Λ denote the ring of symmetric functions over Q. For a partition λ, we let mλ, hλ, pλ, sλ de-
note the monomial, homogeneous, power sum and Schur symmetric functions, respectively, indexed
by λ. Each of these families forms a basis of Λ. Let 〈·, ·〉 be the Hall inner product on Λ satisfying
〈mλ, hµ〉 = 〈sλ, sµ〉 = δλ,µ for partitions λ, µ.

Let Λ(k) denote the subalgebra generated by h1, h2, . . . , hk. The elements hλ with λ1 ≤ k form a basis
of Λ(k). We call a partition λ with λ1 ≤ k a k-bounded partition. Note that there is a bijection between
the set of k-bounded partitions and the set of 0-Grassmannian elements in S̃n [LM05]. Let Λ(k) = Λ/Ik
denote the quotient of Λ by the ideal Ik generated by mλ with λ1 > k. The image of the elements mλ

with λ1 ≤ k form a basis of Λ(k). Note that Ik is isomorphic to the ideal generated by pλ for λ1 > k, so
that pλ for k-bounded partitions λ form a basis of Λ(k). There is another remarkable basis for Λ(k) and
Λ(k). For a k-bounded partition λ, a k-Schur function s(k)λ and an affine Schur function F̃λ are defined
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in [LM07a, LM07b, Lam06]. Lam [Lam08] showed that the k-Schur functions (resp. the affine Schur
functions) are representatives of the Schubert basis of the homology (resp. the cohomology) of the affine
Grassmannian Ĝr for SL(n) via the isomorphism of Hopf-algebras

Λ(k)
∼= H∗(Ĝr)

Λ(k) ∼= H∗(Ĝr).

The restriction of the Hall inner product on Λ(k) × Λ(k) gives the identity 〈F̃λ, s(k)µ 〉 = δλ,µ. Since
we do not use the definitions of k-Schur functions, affine Schur functions, and affine Stanley symmetric
functions in this paper, definitions are omitted. See [Lam06, Lam08, LLMS10] for more details.

2.3 Affine nilCoxeter algebra
The affine nilCoxeter algebra A is the algebra generated by A0, A1, . . . , An−1 over Z, satisfying

A2
i = 0

AiAi+1Ai = Ai+1AiAi+1

AiAj = AjAi if i− j 6= 1,−1.

where the indices are taken modulo n. The subalgebra Af of A generated by Ai for i 6= 0 is isomorphic
to the nilCoxeter algebra studied by Fomin and Stanley [FS94]. The simple generators Ai are considered
as the divided difference operators.

The Ai satisfy the same braid relations as the si in S̃n, i.e., AiAi+1Ai = Ai+1AiAi+1. Therefore it
makes sense to define

Aw = Ai1 · · ·Ail where
w = si1 · · · sil is a reduced decomposition.

Lam [Lam06] defined certain elements hi in A for i < n and showed that the elements {hi}i<n com-
mute and freely generate a subalgebra B of A called the affine Fomin-Stanley algebra. It is well-known
that B is isomorphic to Λ(k) via the map sending hi to hi. Therefore, the set {hλ = hλ1 . . .hλl

| λ1 ≤ k}
forms a basis of B.

3 Affine Fomin-Kirillov algebra
For i ∈ Z, let i be the residue of i modulo n.

Definition 3.1 Let A be the free algebra generated by S = {[ij] : i, j ∈ Z, i < j, i 6= j}. Let A(N) be
the subalgebra of A generated by elements [ij] with |i|, |j| ≥ N . Then we have a filtration

A = A(0) ⊃ A(1) ⊃ A(2) ⊃ · · · .

Let A be the inverse limit lim←− (A/A(i)).
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An element x in A can be written as a (possibly infinite) linear combination of noncommutative mono-
mials [j1,1, j1,2][j2,1, j2,2] · · · [jm,1, jm,2]. For i > j, we use the convention [ij] = −[ji].

Define the Bruhat action of [ij] on A by

Aw · [ij] =

{
Awtij if `(wtij) = `(w)− 1

0 otherwise.
(1)

where tij is a transposition exchanging i and j in S̃n. For an element in A, one can define an action on
A extended linearly. For an element x in A, even if x is an infinite summation of product of [ij]’s, it is
possible that all but finitely many terms in x vanish when acting with x on an element Aw. An element x
inA gives a valid action on A if all but finitely many terms in x vanish when acting with x on any element
Aw. Let E be the subalgebra of A consisting of elements which give a valid action on A. All elements in
A in this paper containing an infinite sum have a valid action on A. Define the mapD : E → HomQ(A,A)
by sending x to Dx, where Dx(Av) := Av ·x. We call Dx a Bruhat operator for x. We often say “x as a
Bruhat operator” instead of Dx since we are mainly interested in describing the cohomology of the affine
flag variety as a subalgebra in HomQ(A,A).

As Bruhat operators, we have following relations between the operators [ij].

(a) [ij]2 = 0.

(b) [ij][kl] = [kl][ij] if i, j, k, l are all distinct.

(c) For i, j, k with distinct residues, [ij][jk] = [jk][ik] + [ik][ij] and [jk][ij] = [ik][jk] + [ik][ij].

(d) For distinct i, j with i 6= j,
∑
i′=i,j′=j [ij

′][ji′] = 0.

(e) [i, j] = [i+ n, j + n].

Note that the relations (a)-(c) are analogous to those in the definition of the Fomin-Kirillov algebra, and
proofs for these relations are similar. The relation (d) is an affine typeA analogue of the quadratic relation
in the bracket algebra which is a generalization of the Fomin-Kirillov algebra to (classical) Coxeter groups
[KM04]. The relation (e) is obvious since we have ti,j = ti+n,j+n as elements in the affine symmetric
group. The quotient algebra of E modulo relations (a)-(e) is called the affine Fomin-Kirillov algebra F̃Kn.

Note that there is a (left) S̃n- action on F̃Kn (and E) defined by w[ij] = [w(i), w(j)] for w ∈ S̃n and
[ij] ∈ S . Indeed, one can check that the two-sided ideal generated by relations (a)-(e) is invariant under
the S̃n-action.

4 Dunkl elements and Murnaghan-Nakayama elements
In this section, we define Dunkl elements and MN elements and investigate identities among these ele-
ments. For i ∈ Z, a Dunkl element θ̃i can be defined in an analogous way to the definition of the Dunkl
element θi in the Fomin-Kirillov algebra defined in [FK99].

Definition 4.1 For i ∈ Z, define a Dunkl element θ̃i by
∑
j∈Z,j 6=i[ij].
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We define Murnaghan-Nakayama elements pm(i) (MN elements in short) in F̃Kn as a generalization
of θm1 + · · · + θmi in the Fomin-Kirillov algebra. Unlike the finite case, MN elements are not generated
by Dunkl elements θ̃i. We define MN elements by investigating the combinatorics of the Fomin-Kirillov
algebra studied by Mészáros, Panova, Postnikov [MPP14] and generalizing them to affine case.

Let D be the 2-dimensional infinite grid. A box is specified by its position (i, j) when the vertices of
the box are (i, j), (i, j+1), (i+1, j), (i+1, j+1). LetDa be the set of all boxes at (i, j) with i ≤ a < j.
A diagram D on Da is a finite collection of boxes in Da. For a diagram D on Da, we associate a graph
with the vertex set Z obtained by adding an edge between i and j for each box at (i, j) inD. We say that a
diagramD is a connected tree if the associated graph consists of all but finitely many isolated points and a
single tree, and all vertices in the tree have distinct residues modulo n. Let Supp(D) be the set consisting
of indices of all vertices in the single tree in the associated graph forD and c(D) the number of vertices in
the tree with index≤ a. Note that the box at (i, i+np) does not appear in a connected tree for any i, p ∈ Z.

A labeling DL on a diagram D is a bijection from the set {1, 2, . . . , |D|} to the set of boxes in D.
For a labeling L of a connected tree D, one can associate an element in the affine FK algebra defined by
xDL

= [DL(1)][DL(2)] . . . [DL(|D|)] where [DL(i)] is [aibi] for the i-th box placed at (ai, bi). We call
two labelings L and L′ equivalent if we have xDL

= xDL′ by only using commutation relation.

The following lemma is an obvious generalization of [MPP14, Lemma7].

Lemma 4.2 Let v, l be positive integers and D be a connected tree in Da with l + v boxes contained in l
rows and v + 1 columns. Then the following two sets are equal:

1. The equivalent classes of labelings of D such that the class contains a labeling with:
i1, . . . , il are distinct, j1 ≤ · · · ,≤ jl, jl+1, . . . , jl+v are distinct, il+1 ≤ · · · ≤ il+v .

2. The equivalent classes of labelings of D such that the class contains a labeling with:
i1, . . . , il−1 are distinct, j1 ≤ · · · ,≤ jl−1, jl, . . . , jl+v are distinct, il ≤ · · · ≤ il+v .

Let M(D) = {DL1 , . . . , DLh
} be the set of representative labelings of equivalent classes in Lemma 4.2.

Definition 4.3 Let m and a be positive integers. Define pm(a) in F̃Kn by

pm(a) =
∑
D∈Da

∑
DL∈M(D)

(−1)c(D)−1xDL

where the first sum runs over connected trees in Da. We denote pm(0) by pm.

We list few identities among Dunkl elements and MN elements.

Theorem 4.4 For m < n, i ∈ Z, we have

pm(i) + θ̃mi+1 = pm(i+ 1)

in F̃Kn.
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Theorem 4.5 For m > 0, we have
n∑
i=1

θ̃mi = 0.

Proof. It is obvious from Theorem 4.4 and the fact pm(0) = pm(n) by the relation (e). 2

Theorem 4.6 For i, a ∈ I ,we have

sipm(a) =

{
pm(a) if i 6= a

pm(i) + θ̃mi+1 − θ̃mi . i=a
(2)

For x = pm, we call Dpm a Murnaghan-Nakayama operator of degree m (a MN operator in short).
The following theorems uniquely determine the MN operators.

Theorem 4.7 For w ∈ S̃n and w′ ∈ Sn, we have

Dpm
(AwAw′) = Dpm

(Aw)Aw′ .

Theorem 4.8 For h ∈ B and w ∈ S̃n,

Dpm(hAw) = Dpm(h)Aw + hDpm(Aw).

Theorem 4.9 For 1 ≤ m ≤ i < n and a ∈ Z, we have

Dpm(a)hi = hi−m.

5 Relations between operators
To show Theorem 1.1, it is enough to show that

∑m−1
i=0 (−1)iDρi,m also satisfies Theorem 4.7, 4.8, 4.9.

First of all, Theorem 4.7 follows from the fact that all ρi,m are 0-Grassmannian elements (See [Lee14]).
Therefore, it is enough to show that Dpm

and
∑m−1
i=0 (−1)iDρi,m are the same operators as actions on

B ∼= Λ(k). One can show that the restriction of Dρi,m is s[m−i,1i]⊥, where s[m−i,1i] is the Schur function
for the hook shape [m − i, 1i], s[m−i,1i] is the image of s[m−i,1i] in Λ(k), and f⊥ is an operator acting
on Λ(k) adjoint to the multiplication by f for f ∈ Λ(k),. This follows from the comparison between cap
operators and BSS operators denoted by DJ in [BSS14]. See [Lee14] for details.

Recall the following theorems about the power sum symmetric functions pm: (see [Sta99] for instance):

pm =

m−1∑
i=0

(−1)is[m−i,1i],

p⊥m(fg) = p⊥m(f)g + fp⊥m(g),

p⊥m(hi) = hi−m

for any symmetric functions f, g. Therefore, we proved that D =
∑m−1
i=0 (−1)iDρi,m satisfies the follow-

ing identities.
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1. D(fg) = D(f)g + fD(g) for f, g ∈ B.

2. D(hAv) = D(h)Av for h ∈ B and a 0-Grassmannian element v.

3. D(hi) = hi−m

Note that the above identities uniquely determine D as an action on A. Since pm also satisfies the above
identities by Theorem 4.7, 4.8, 4.9, the main theorem follows. 2

6 Murnaghan-Nakayama rule for the affine flag variety
Recall that ξw is the Schubert class for w in the cohomology of the affine flag variety and ξ(m) =∑m
i=0(−1)iξρi,m . Note that ξ(m) maps to pm via the map p∗1 : H∗(F̂ l)→ H∗(Gr) ∼= Λ(k).

Theorem 6.1 For w, u ∈ S̃n,m < n, let cwm,u be integers satisfying Dpm(Aw) =
∑
u c

w
m,uAu. Then for

v ∈ S̃n, we have

ξ(m) ∪ ξv =
∑
w∈S̃n

cwm,vξ
w.

Proof. For u ∈ S̃n, let ξu be the Schubert class for u in the homology of the affine flag variety and let
〈·, ·〉 be the pairing between the cohomology and homology of the affine flag variety. Then we have

〈ξ(m) ∪ ξv, ξw〉 = 〈ξv, Dpm(ξw)〉 = cwm,v.

2

Therefore, the definition of pm provide MN rule for the cohomology of the affine flag variety. One
can also obtain the MN rule for the affine Stanley symmetric functions from the fact that the Stanley
symmetric function F̃w is the pullback p∗1(ξw) where p∗1 : H∗(F̂ l)→ H∗(Ĝr) (See [Lam08] for details).
By applying the pullback p∗1 to both sides of Theorem 6.1, we have the following MN rule.

Corollary 6.2 For m < n, v ∈ S̃n, we have

pmF̃v =
∑
w∈S̃n

cwm,vF̃w.

Example 6.3 Consider the identity F̃10p3 = F̃12310− F̃20310 + F̃03210. Each term can be computed from
the Bruhat actions of the following terms in pm(0).

s1s2s3s1s0 · [−2, 1][−4, 1][−1, 1] = s1s0

s2s0s3s1s0 · [−4, 1][−1, 2][−1, 1] = s1s0

s0s3s2s1s0 · [0, 6][0, 5][0, 3] = s1s0.
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By applying Theorem 6.2 repeatedly from v = id, one can write pλ in terms of linear combination
of the affine Schur functions F̃v . By taking dual, one can write a k-Schur function s

(k)
u in terms of

power sum symmetric functions pµ. Note that the k-Schur function s(k)u is known to be Schur-positive
[LLMS13], so there exists a Sn-representation whose Frobenius image is s(k)u . Therefore the description
of k-Schur function in terms of pµ provides the character table of the represntation. Note that Chen and
Haiman [CH08] conjectured t-graded Sn-representation whose Frobenius image is the involution of the
t-dependent k-Schur function ωs(k)u [X; t]. It would be interesting if the combinatorics studied by Chen
and Haiman is related to the combinatorics studied in this paper.

7 Affine Schubert polynomials
In this section, we provide the definition of the affine Schubert polynomials, polynomial representatives
of the Schubert class in the cohomology of the affine flag variety F̂ l. We start with the following theorem
proved in [Lee14].

Theorem 7.1 The cohomology of the affine flag variety F̂ l is generated by ξ(m) form < n and ξsi+1−ξsi
for i ∈ Z/nZ, and the subalgebra generated by ξ(m) (resp. ξsi+1 − ξsi ) is isomorphic to the cohomol-
ogy of the affine Grassmannian (resp. finite flag variety). Moreover, under the isomorphisms we have
H∗(F̂ l) ∼= H∗(Ĝr)⊗H∗(Fln).

Note thatH∗(Ĝr) is isomorphic to Λ(k) ∼= Q[p1, . . . , pk] andH∗(Fln) is isomorphic to Q[x1, . . . , xn]
modulo an ideal J = 〈hi(x) = 0 ∀i〉 where hi is the homogeneous symmetric function of degree i. For
w ∈ S̃n, the affine Schubert polynomial S̃w forw is defined as an element in Q[p1, . . . , pk, x1, . . . , xn]/J

corresponding to the Schubert basis ξw in H∗(F̂ l). One can explicitly define the affine Schubert polyno-
mial in terms of divided difference operators in the following way.

Definition 7.2 For i ∈ Z/nZ, the Weyl group action si and the divided difference operator ∂i := 1−si
xi−xi+1

on Rn can be uniquely defined by the following rules.

1. For f, g ∈ H∗(F̂ l), we have si(fg) = si(f)si(g). Therefore ∂i satisfies the Leibniz’s rule: for
f, g ∈ H∗(F̂ l), we have

∂i(fg) = ∂i(f)g + si(f)∂i(g).

2. For nonzero i and for all m, we have si(pm) = pm and ∂i(pm) = 0.

3. For i = 0, we have s0(pm) = pm + xm1 − xm0 and ∂0(pm) =
∑m−1
j=0 xm−1−j1 xj0.

4. For all i, j ∈ Z/nZ, we have si(xj) = xsi(j) and ∂i(xj) = δij − δi,j+1.

Definition 7.3 For w ∈ S̃n, the affine Schubert polynomial S̃w is the unique homogeneous element of
degree `(w) in Rn satisfying

∂iS̃w =

{
S̃wsi if `(wsi) = `(w)− 1

0 otherwise.

for i ∈ Z/nZ, with the initial condition S̃id = 1.
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The affine Schubert polynomials behave surprisingly well with the affine Stanley symmetric functions
F̃w [Lam08] for w ∈ S̃n and the Schubert polynomials Sv for v ∈ Sn. First note that the divided dif-
ference operators ∂i for nonzero i on the subalgebra of Rn generated by xi’s are the same as the divided
difference operators defined by Lascoux and Schützenberger [LS82], so that S̃w for w ∈ Sn is the Schu-
bert polynomial Sw. Moreover the affine Schubert polynomial S̃w for 0-Grassmannian element w is the
same as the affine Schur functions, and for w ∈ S̃n the projection from Rn to Q[p1, . . . , pn−1] sends S̃w

to the affine Stanley symmetric functions F̃w [Lam08].

The affine Schubert polynomials can be computed from the affine Stanley functions. For w ∈ S̃n, let v
be an element in S̃n such that wv is 0-Grassmannian with `(wv) = `(w) + `(v). There is always such a
v for any w. Let F̃wv be the affine Schur function for wv. Then we have

S̃w = ∂v−1S̃wv = ∂v−1 F̃wv.

Note that there is a formula for the expansion of the affine Schur functions in terms of power sum sym-
metric functions [BSZ11], so that one can compute the affine Schubert polynomials from Definition 7.2,
7.3.
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