Proceedings of the 28-th International Conference on Formal Power Series and Algebraic Combinatorics
4-8 Jul 2016 Vancouver, British Columbia (Canada)
A bijection for nonorientable general maps
Jeremie Bettinelli  1  
1 : Laboratoire dínformatique de l\'École polytechnique [Palaiseau]  (LIX)  -  Website
Ecole Polytechnique, Centre National de la Recherche Scientifique : UMR7161
Route de Saclay 91128 PALAISEAU CEDEX -  France

We give a different presentation of a recent bijection due to Chapuy and Dołe ̨ga for nonorientable bipartite quadrangulations and we extend it to the case of nonorientable general maps. This can be seen as a Bouttier–Di Francesco–Guitter-like generalization of the Cori–Vauquelin–Schaeffer bijection in the context of general nonori- entable surfaces. In the particular case of triangulations, the encoding objects take a particularly simple form and we recover a famous asymptotic enumeration formula found by Gao. 



  • Poster
Online user: 1